It seems X11 does not like creating barriers entirely off the screen,
though the error seems to be a little unreliable (however, off the left
edge was definitely bad).
For now, only the first two axis (mouse X and Y) are supported (XInput
treats the scroll wheel events as axes too, so mice have up to 4!), but
most importantly, this prevents the scroll wheel from being seen as the
X axis. Oops.
With the old headers removed, X11_SetGamma became a stub and gcc
complained about it wanting the const attribute. On investigation, it
turned out the X_XF86VidModeSetGamma was a holdover from the initial
implementation of hardware gamma support.
UI key presses are still handled by regular X events, but in-game
"button" presses arrive via raw keyboard events. This gives transparent
handling of keyboard repeat (UI keys see repeat, game keys do not),
without messing with the server's settings (yay, that was most annoying
when it came to debugging), and the keyboard is never grabbed, so this
is a fairly user-friendly setup.
At first, I wasn't too keen on capturing them from the root window
(thinking about the user's security), but after a lot of investigation,
I found a post by Peter Hutterer
(http://who-t.blogspot.com/2011/09/whats-new-in-xi-21-raw-events.html)
commenting that root window events were added to XInput2 specifically
for games. Since application focus is tracked and unfocused key events
are dropped very early on, there's no way for code further down the
food-chain to know there even was an event, abusing the access would
require modifying the x11 input code, in which case all bets are off
anyway and any attempt at security anywhere in the code will fail,
meaning that nefarious progs code and the like shouldn't be a problem.
After a lot of thought, it really doesn't make sense to have an option
to block mouse input in x11 (not grabbing or similar does make sense, of
course). Not initializing mouse input made perfect sense in DOS and even
console Linux (SVGA) what with the low level access.
It turns out that if the barriers are set on the app window, and the app
grabs the pointer (even passively), barrier events will no longer be
sent to the app. However, creating the barriers on the root window and
the events are selected on the root window, the barrier events are sent
regardless of the grab state.
Other subsystems, especially low-level input drivers, need to know when
the app has input focus. eg, as the evdev driver uses the raw stream
from the kernel, which has no idea about X application focus (in fact,
it seems the events are shared across multiple apps without any issue),
the evdev driver sees all the events thus needs to know when to drop
them.
It turns out to be possible to get a barrier event at the same time as a
configure notify event (which rebuilds the barriers), and trying to
release the pointer at such a time results in a bad barrier error and
program crash. Thus check the event barrier against the currently
existing barriers before attempting to release the pointer.
This does mean that a better mechanism for sequencing window
repositioning and barrier creation may be required.
This should be a much friendlier way of "grabbing" input, though I
suspect that using raw keyboard events will result in a keyboard grab,
which is part of the reason for wanting a friendly grab.
There does seem to be a problem with the mouse sneaking out of the
top-right and bottom-left corners. I currently suspect a bug in the X
server, but further investigation is needed.
This is needed for getting window position info into in_x11 without
exposing more globals, and is likely to be useful for other things,
especially as it doubles as a resize event when that's eventually
supported.
This is necessary in focus-follows-mouse environments (at least for
openbox, but it wouldn't surprise me if most other WMs behave the same
way) because the WMs don't set focus when the pointer is grabbed (which
XInput does before the WM sees the enter event). This is especially
important when the window is fullscreen on a multi-monitor setup as
there is no border to *maybe* catch the mouse before it enters the
window.
Right now, only raw pointer motion and button events are handled, and
the mouse escapes the window, and there are some issues with focus in
focus-follows-mouse environments. However, this should be a much nicer
setup than DGA.
The current limit is still 32. Dealing with it properly will take some
rather advanced messing with XInput, and will be necessary assuming
non-XInput support is continued.
There's now IN_X11_Preinit, IN_X11_Postinit (both for want of better
names), and in_x11_init. The first two are for taking care of
initialization that needs to be done before window creation and between
window creation and mapping (ie, are very specific to X11 stuff) while
in_x11_init takes care of the setup for the input system. This proved
necessary in my XInput experimentation: a passive enter grab takes
effect only when the pointer enters the window, thus setting up the grab
with the pointer already in the window has no effect until the pointer
leaves the window and returns.
This was always a horrible hack just to get the screen centered on the
window back when we were doing fullscreen badly. With my experiments
with XInput, it has proven to be a liability (I'd forgotten it was even
there until it started imposing a 2s delay to QF's startup).
Input driver can now have an optional init_cvars function. This allows
them to create all their cvars before the actual init pass thus avoiding
some initialization order interdependency issues (in this case, fixing a
segfault when starting x11 clients fullscreen due to the in_dga cvar not
existing yet).
Well... it could be done better, but this works for now assuming it's in
/usr/include (and it's correct for mxe builts). Does need proper
autoconfiscation, though.
Seems to work nicely for keyboard (though key bindings are not
cross-platform). Mouse not tested yet, and I expect there are problems
with it for absolute inputs (yay mouse warp :P).
Mouse axis and button names are handled internally (and thus
case-insensitive).
Key names are handled by X11. Case-sensitivity is currently determined
by Xlib.
The cooked inputs (ie_key, ie_mouse) are intended for UI interaction, so
generally should have priority over the raw events, which are intended
for game interaction.
This has smashed the keydest handling for many things, and bindings, but
seems to be a good start with the new input system: the console in
qw-client-x11 is usable (keyboard-only).
The button and axis values have been removed from the knum_t enum as
mouse events are separate from key events, and other button and axis
inputs will be handled separately.
keys.c has been disabled in the build as it is obsolute (thus much of
the breakage).
I'm undecided on how to handle application focus (probably gain/lose
events), and the destination handler has been a stub for a while. One less
dependency on the "old" key handling code.
I'm undecided if the pasted text should be sent as a string rather than
individual key events, but this will do the job for now as it gets me
closer to being able to test everything.
It seems that under certain circumstances (window managers?), select is not
reliable for getting key events, so use of select has been disabled until I
figure out what's going on and how to fix it.
For the mouse in x11, I'm not sure which is more cooked: deltas or
window-relative coordinates, but I don't imagine that really matters too
much. However, keyboard and mouse events suitable for 2D user interfaces
are sent at the same time as the more game oriented button and axis events.
The x11 keyboard and mouse devices are really core input devices rather
than x11 input devices in that keyboard and mouse will be present on most
systems and thus not specific to the main user interface (x11, windows,
etc).
Now nothing works at all ;) However, that's only because the binding
system is incomplete: the X11 input events are getting through to the
binding system, so now it's just a matter of getting that to work.
The common input code (input outer loop and event handling) has been
moved into libQFinput, and modified to have the concept of input drivers
that are registered by the appropriate system-level code (x11, win,
etc).
As well, my evdev input library code (with hotplug support) has been
added, but is not yet fully functional. However, the idea is that it
will be available on all systems that support evdev (Linux, and from
what I've read, FreeBSD).
For now, the functions check for a null hunk pointer and use the global
hunk (initialized via Memory_Init) if necessary. However, Hunk_Init is
available (and used by Memory_Init) to create a hunk from any arbitrary
memory block. So long as that block is 64-byte aligned, allocations
within the hunk will remain 64-byte aligned.
The fact that numleafs did not include leaf 0 actually caused in many
places due to never being sure whether to add 1. Hopefully this fixes
some of the confusion. (and that comment in sv_init didn't last long :P)
Modern maps can have many more leafs (eg, ad_tears has 98983 leafs).
Using set_t makes dynamic leaf counts easy to support and the code much
easier to read (though set_is_member and the iterators are a little
slower). The main thing to watch out for is the novis set and the set
returned by Mod_LeafPVS never shrink, and may have excess elements (ie,
indicate that nonexistent leafs are visible).
-999999 seems to be a hold-over from the software renderer passed
through both gl renderers. I guess it didn't matter in the gl renderers
due to various draw hacks, but it made quite a difference in vulkan.
Fixes the view model covering the hud.
Quake just looked wrong without the view model. I can't say I like the
way the depth range is hacked, but it was necessary because the view
model needs to be processed along with the rest of the alias models
(didn't feel like adding more command buffers, which I imagine would be
expensive with the pipeline switching).
The recent changes to key handling broke using escape to get out of the
console (escape would toggle between console and menu). Thus take care
of the menu (escape) part of the coupling FIXME by implementing a
callback for the escape key (and removing key_togglemenu) and sorting
out the escape key handling in console. Seems to work nicely
Without shadows, this is quite the cheat, but noclip is a cheat anyway,
so probably not that big a deal. It does, however, make noclip usable
for debugging.
Since vulkan supports 32-bit indexes, there's no need for the
shenanigans the EGL-based glsl renderer had to go through to render bsp
models (maps often had quite a bit more than 65536 vertices), though the
reduced GPU memory requirements of 16-bit indices does have its
advantages.
Any sun (a directional light) is in the outside node, which due to not
having its own PVS data is visible to all nodes, but that's a tad
excessive. However, any leaf node with sky surfaces will potentially see
any suns, and leaf nodes with no sky surfaces will see the sun only if
they can see a leaf that does have sky surfaces. This can be quite
expensive to calculate (already known to be moderately expensive for
just the camera leaf node (singular!) when checking for in-map lights)
Getting close to understanding (again) how it all works. I only just
barely understood when I got vulkan's renderer running, but I really
need to understand for when I modify things for shadows. The main thing
hurdle was tinst, but that was dealt with in the previous commit, and
now it's just sorting out the mess of elechains and elementss.
Its sole purpose was to pass the newly allocated instsurf when chaining
an instance model (ammo box, etc) surface, but using expresion
statements removes the need for such shenanigans, and even makes
msurface_t that little bit smaller (though a separate array would be
much better for cache coherence).
More importantly, the relevant code is actually easier to understand: I
spent way too long working out what tinst was for and why it was never
cleared.
The renderer's LineGraph now takes a height parameter, and netgraph now
uses cl_* cvars instead of r_* (which never really made sense),
including it's own height cvar (the render graphs still use
r_graphheight).
The render plugins have made a bit of a mess of getting at the data and
thus it's a tad confusing how to get at it in different places. Really
needs a proper cleanup :(
conwidth and conheight have been moved into vid.conview (probably change
the name at some time), and scr_vrect has been replaced by a view as
well. This makes it much easier to create 2d elements that follow the
screen size (taking advantage of a view's gravity) which will, in the
end, make changing the window size easier.
It now processes 4 pixels at a time and uses a bit mask instead of a
conditional to set 3 of the 4 pixels to black. On top of the 4:1 pixel
processing and avoiding inner-loop conditional jumps, gcc unrolls the
loop, so Draw_FadeScreen itself is more than 4x as fast as it was. The
end result is about 5% (3fps) speedup to timedemo demo1 on my 900MHz
EEE Pc when nq has been hacked to always draw the fade-screen.
qwaq-curses has its place, but its use for running vkgen was really a
placeholder because I didn't feel like sorting out the different
initialization requirements at the time. qwaq-cmd has the (currently
unnecessary) threading power of qwaq-curses, but doesn't include any UI
stuff and thus doesn't need curses. The work also paves the way for
qwaq-x11 to become a proper engine (though sorting out its init will be
taken care of later).
Fixes#15.
This refactors (as such) keys.c so that it no longer depends on console
or gib, and pulls keys out of video targets. The eventual plan is to
move all high-level general input handling into libQFinput, and probably
low-level (eg, /dev/input handling for joysticks etc on Linux).
Fixes#8
Standard quake has just linear, but the modding community added inverse,
inverse-square (raw and offset (1/(r^2+1)), infinite (sun), and
ambient (minlight). Other than the lack of shadows, marcher now looks
really good.
Because LoadImage uses Hunk_TempAlloc, the face images need to be copied
individually. Really, what's neeeded is to be able to load the image
data into a pre-allocated buffer (ideally, the staging buffer for
vulkan, but that's for later).
Mostly, this gets the stage flags in with the barrier, but also adds a
couple more barrier templates. It should make for slightly less verbose
code, and one less opportunity for error (mismatched barrier/stages).
This gets the shaders needed for creating shadow maps, and the changes
to the lighting pipeline for binding the shadow maps, but no generation
or reading is done yet. It feels like parts of various systems are
getting a little big for their britches and I need to do an audit of
various things.
The built up "path" name of the handle resource was not always surviving
the intervening call to cexpr_eval_string (in particular, when other
handles were created in the process of creating a handle). Rather than
simply increase the number of va buffers (where would it end?), just
regenerate the path when adding the new handle. It's probably quick
enough, and the code is not usually not on a critical path.
I was reading about multi-pass rendering on mobile devices
(https://developer.oculus.com/blog/loads-stores-passes-and-advanced-gpu-pipelines/)
and discovered that I had used the wrong flags (but then, I think Graham
Sellers had, too, since used his Vulkan Programming Guide as a
reference). Doesn't seem to make any difference on desktop, but as
there's no loss there, but potential gains on mobile, I'd say it's a
win.
I'm not sure that the mismatch between refdef_t and the assembly defines
was a problem (many fields unused), but the main problem was due to
execute permission on the pages: one chunk of asm was in the data
section, and the patched code was not marked as being executable (due to
such a thing not existing when quake was written).
This ensures that fov_y is not calculated until after the render view
size is known and thus doesn't become some crazy angle (that happens to
result in a negative tan). Fixes upside-down-quake :)
vid.aspect is removed (for now) as it was not really the right idea (I
really didn't know what I was doing at the time). Nicely, this *almost*
fixes the fov bug on fresh installs: the view is now properly
upside-down rather than just flipped vertically (ie, it's now rotated
180 degrees).
Not only does it makes sense to centralize the setting of viewport and
scissor, but it's actually necessary in order to fix the upside-down
rendering on windows.
This gets the GL and GLSL renderers working for the -win targets... sort
of: they are upside down and GLSL's bsp surfaces are black (same as
Vulkan). However, with this, all 5 renderers at least limp along for
-win, 4/5 work for -sdl.
It turns out the dd and dib "driver" code is very specific to the
software renderer. This does not fix the segfault on changing video
mode, but I do know where the problem lies: the window is being
destroyed and recreated without recreating the buffers. I suspect a
clean solution to this will allow for window resizing in X as well.
Only 64-bit windows is tested, and there are still various failures, but
QF is limping along in windows again.
nq-sdl works for sw, and sw32, gl and glsl are mostly black (but not
entirely for gl?), vulkan is not supported with sdl.
nq-win works for sw and sw32, and sort of for vulkan (very dark and
upside-down?). gl and glsl complain about vid mode,
qw-client-[sdl,win] seem to be the same, but something is wrong with the
console (reading keyboard input).
While this caused some trouble for pr_strings and configurable strftime
(evil hacks abound), it's the result of discovering an ancient (from
maybe as early as 2004, definitely before 2012) bug in qwaq's printing
that somehow got past months of trial-by-fire testing (origin understood
thanks to the warning finding it).
It looks like choosing a visual is not necessary (at least for normal
apps, VR might be another matter). Still no idea if anything works (for
-win support in general, let alone vulkan).
This separate the FOV calculations from other refdef calcs, cleaning up the
renderer proper and making it easier for other parts of the engine (eg,
csqc) to update the fov.
Loading is broken for multi-file image sets due to the way images are
loaded (this needs some thought for making it effecient), but the
Blender environment map loading works.
They're unlit (fullbright, but that's nothing new for quake), but
working nicely. As a bonus, sort out the sky pass (forced to due to the
way command buffers are used).
There were actually several problems: translucency wasn't using or
depending on the depth buffer, and the depth buffer wasn't marked as
read-only in the g-buffer pass. Getting that correct seems to have given
bigass1 a 0.5% boost (hard to say, could be the usual noise).
While being able to write pipeline specs like this was the end goal of
the parsing sub-project, I didn't realize it was already usable. This
sure makes going through the pipeline specs much easier.
That was... easier than expected. A little more tedious that I would
have liked, but my scripting system isn't perfect (I suspect it's best
suited as the output of a code generator), and the C side could do with
a little more automation.
Other than dealing with shader data alignment issues, that went well :).
Nicely, the implementation gets the explicit scaling out of the shader,
and allows for a directional flag.
I never liked that some of the macros needed the type as a parameter
(yay typeof and __auto_type) or those that returned a value hid the
return statement so they couldn't be used in assignments.
Still "some" more to go: a pile to do with transforms and temporary
entities, and a nasty one with host_cbuf. There's also all the static
block-alloc lists :/
Light styles and shadows aren't implemented yet.
The map's entities are used to create the lights, and the PVS used to
determine which lights might be visible (ie, the surfaces they light).
That could do with some more improvements (eg, checking if a leaf is
outside a spotlight's cone), but the concept seems to work.
This is the first step towards component-based entities.
There's still some transform-related stuff in the struct that needs to
be moved, but it's all entirely client related (rather than renderer)
and will probably go into a "client" component. Also, the current
components are directly included structs rather than references as I
didn't want to deal with the object management at this stage.
As part of the process (because transforms use simd) this also starts
the process of moving QF to using simd for vectors and matrices. There's
now a mess of simd and sisd code mixed together, but it works
surprisingly well together.
It's not used yet as work needs to be done to better support generic
entities, but this is the next step to real-time lighting (though, to be
honest, I expect it will be too slow to be usable).
There's still the memory management itself to clean up, but the main
code no longer uses any static/global variables (holdover from when the
function was recursive rather).
The static libs are used to build the plugins, but make it easy to use
only those modules needed for tests. Fixes the link error when running
"make check" with non-static plugins.
Static lights are yet to come (so the screen is black most of the time),
but dynamic lights work very nicely (and look very good) despite the
falloff being incorrect.
While I could reconstruct the position from the screen coords and depth,
this is easier and good enough for now. Reconstruction is an
optimization thing.
Lighting doesn't actually do lights yet, but it's producing pixels.
Translucent seems to be working (2d draw uses it), and compose seems to
be working.
This gets the alias model render pass and pipeline passing validation.
I don't know why I didn't add the subpass field to the
VkGraphicsPipelineCreateInfo parser def, though it could be I simply
missed it, or I thought I wouldn't need it at the time.
Due to wanting to access array sizes when parsing uint32_t type values,
parse_uint32_t needs to handle size_t values even though it throws out
any excess bits.
After getting lights even vaguely working for alias models, I realized
that it just wasn't going to be feasible to do nice lighting with
forward rendering. This gets the bulk of the work done for deferred
rendering, but still need to sort out the shaders before any real
testing can be done.
Never really wanted in the first place (back when I did the plugin
renderers), but I didn't feel like doing the required work to avoid it
at the time. At least with Vulkan being a fresh start in an environment
that's already plugin-friendly, there was no real work involved. I'll
get to the other renderers eventually (especially now that I know gdb
does the right thing when there are multiple functions with the same
name).
It turns out I had conflated frame buffers with frames and wound up
making a minor mess when separating the number of frames the renderer
could have in flight from the number of swap-chain images. This is the
first step towards correcting that mistake.
It's not entirely there yet, but the basics are working. Work is still
needed for avoiding duplication of objects (different threads will have
different contexts and thus different tables, so necessary per-thread
duplication should not become a problem) and general access to arbitrary
fields (mostly just parsing the strings)
The node struct was 72 bytes thus two cache line. Moving the pointer
into the brush model data block allows nodes to fit in a single cache
line (not that they're aligned yet, but that's next). It doesn't seem to
have made any difference to performance (at least in the vulkan
renderer), but it hasn't hurt, either, as the only place that needed the
parent pointer was R_MarkLeaves.
It's not quite as expected, but that may be due to one of msaa, the 0-15
range in the palette not being all the way to white, the color gradients
being not quite linear (haven't checked yet) or some combination of the
above. However, it's that what should be yellow is more green. At least
the zombies are no longer white and the ogres don't look like they're
wearing skeleton suits.
Doesn't seem to make much difference performance-wise, but speed does
seem to be fill-rate limited due to the 8x msaa. Still, it does mean
fewer bindings to worry about.
This is a big step towards a cleaner api. The struct reference in
model_t really should be a pointer, but bsp submodel(?) loading messed
that up, though that's just a matter of taking more care in the loading
code. It seems sensible to make that a separate step.
I've decided that alias model skins should be in a single four-level
array texture rather than spread over four textures, but there's no way
I want to write that code again: getting it right was hard enough the
first time :P
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
I had messed up my index array creation, but once that was fixed the
textures worked well other than a lot of pixels are shades of grey due
to being in the top or bottom color map range.
I don't really know why (I need to do some research), but this fixes the
lockups when accessing the matrices UBO. It has made a mess of my
carefully designed uniform binding layout, so I hope I can get bound
descriptor sets working the way I want, but I really need to progress on
the rest of the project.
It's a tad bogus as it's the lights close to the camera, but it should
at least be a good start once things are working. There's currently
something very wrong with the state of things.
This makes tex_t more generally useable and probably more portable. The
goal was to be able to use tex_t with data that is in a separate chunk
of memory.
The sky texture is loaded with black's alpha set to 0. While this does
hit both layers, the screen is cleared to black so it shouldn't be a
problem (and will allow having a skybox behind the sheets).
Glow map and sky sheet and cube need to wait until I can get some
default textures going, but the world is rendering correctly otherwise
(though a tad dark: need to do a gamma setting).
It now uses the ring buffer code I wrote for qwaq (and forgot about,
oops) to handle the packets themselves, and the logic for allocating and
freeing space from the buffer is a bit simpler and seems to be more
reliable. The automated test is a bit of a joke now, though, but coming
up with good tests for it... However, nq now cycles through the demos
without obvious issue under the same conditions that caused the light
map update code to segfault.
Needed to use an rgba format to use floats (and optimal layout), but
having to set the alpha to 1 even for full-dark luxels is not very
efficient. Better to just ignore the alpha in the shader. Fixes the
occasional transparent surface in shadowed areas.
Many surfaces are missing (I suspect it's due to transform stage
management in the index emitter), and currently only the light maps are
rendered (still not binding the correct textures), but the basics are
working.
Vulkan validation (quite rightly) doesn't like it when the flush range
goes past the end of the buffer, but also doesn't like it when the flush
range isn't cache-line aligned, so align the size of the buffer, too.
Copying data from the wrong buffer was the cause of the corrupted brush
model vertices, and then lots of little errors (mostly forgetting to
multiply by bpp) for textures.
I had originally planned on mixing the stage management with general
texture support code like I did in glsl, but I think that was a mistake
and I did keep looking for scrap.[ch] when I wanted to edit something to
do with the scrap...
There's still a problem with the vertex data itself not getting sent to
the GPU properly, but vulkan is now happy with my tiny test map (which
required disabling skies entirely until I get null textures working).
This cleans up texture_t and possibly even improves locality of
reference when running through texture chains (not profiled, and not
actually the goal).
It optionally generates mipmaps, and supports the main texture types
(especially for texture packs), including palettes, but is otherwise
rather unsophisticated code. Needs a lot of work, but testing first.
This is more correct as the environment (X11 etc) might provide more
swapchain images than we want: 3 frames in flight is generally
considered a good balance between saturating the hardware and latency.
Cleans up global space and makes it usable in multiple contexts. Also,
max quads dropped to 32k as each frame now has its own vertex buffer to
avoid issues with vertex overwrites (which I have seen). However, all
vertex buffers are in the one memory/buffer object (using offsets) and
the index buffer has been moved into a device-local memory object.
I think I did two as a bit of a ring buffer, but the new ring buffer
system used inside a staging buffer makes it less necessary. Also, the
staging buffer is now a fair bit bigger (4M is probably not really
enough)
This allows the array in which the command buffers are allocated to be
allocated on the stack using alloca and thus remove the need to
malloc/free of relatively small chunks.
The console background is missing, and scaled vs unscaled (currently
always scaled) 2d, but otherwise everything seems to work. Lots of
places to clean up, though.
Draw now has its own staging buffer to use with its scrap. Also, a few
fixes were needed for the staging buffer and scrap flush routines.
Other than some synchronization issues with draw scrap flushing
(currently worked around with a fence-wait) things seem to be working
nicely.
The scrap texture did very good things for the glsl renderer and the
better control over data copying might help it do even better things for
vulkan, especially with lots of little icons.
It's never actually used (the texture can be fetched using
GLSL_ScrapTexture) and gets in the way of sharing the scrap system with
the vulkan renderer.
r_screen because of SCR_UpdateScreen, and r_cvar because the cvars
really should never have been in a plugin in the first place (and
r_screen needed access).
First pixels! This was a nightmare of little issues that the validation
layers couldn't help with: incorrect input assembly, incorrect vertex
attribute specs. Though the layers did help with getting the queues
working. Still, lots of work to go but this is a major breakthrough as
I now have access to visual debugging for textures and the like.
Short wrappers for Draw functins are in vid_render_vulkan.c so the
vulkan context can be passed on to the actual functions. The 2D shaders
are set up similar to those in glsl, but with full 32-bit color (rgba)
support instead of paletted. However, the textures are not loaded yet,
nor is anything bound.
This necessitated hand-writing qfv_swapchain_t's descriptors as I don't
feel like getting that complicated with vkgen at this stage and it's not
really appropriate anyway? qfv_swapchain_t is meant to be read-only and
not parsed from a plist.
The prototypes for handle parsers needed to be changes because it turned
out "single" was inappropriate for handles as "single" allocates memory
for the parsed object, but handles must be written directly.
The way I wound up using the field meant that exprctx should not "own"
the hashlinks chain, but rather just point to it. This fixes the nasty
access errors I had.
Dependencies on vkparse.hinc were spreading through the code which I
didn't want as that removes a lot of the automation from the automake
files. This keeps all parser code internal to vkparse.c's scope, and any
accesses required for enum and struct (not yet) definitions can be
fetched by name.
Array and single type overrides now allow the parsing of the items
themselves to be customized. This makes it easy to handle arrays and
pointers to single items while also using custom specifications, rather
than relying entirely on the custom override.
QC's int type is named "integer" (didn't feel like changing that right
now), so special case it to be "int".
Output the parse func name (instead of "fix me").
Output a parse func for enums (needed for arrays of enums
(VkDynamicState)).
The static variable meant that Fog_GetColor was not thread-safe (though
multiple calls in the one thread look to be ok for now). However, this
change takes it one step closer to being more generally usable.
Patch found in an old stash.
I had missed the array declaration and thus initialized the pointer to
the offset array incorrectly. Didn't show up until I tried using
multiple offsets.
Shaders can be built as spv files and installed into
$libdir/quakeforge/shaders or as spvc files and compiled into the
engine. Loading supports $builtin/name to access builtin shaders,
$shader/path to access external standard shaders and quake filesystem
access for all other paths.
I had forgotten that msaa samples was governed by the driver (as a max)
and the renderpass setup code simply took the max. Thus why 1 vs 8
caused the display to render incorrectly.
It turned out the msaa setting defaulting to 1 instead of 8 was the
problem no idea why at this stage (need to read up on just how that
setting works). Once I understand just how it works, I'll rework the
msaa handling.
This gets renderpass parsing almost working (not hooked up, though). The
missing bits are support for expressions for flags (namely support for
the | operator) and references (eg $swapchain.format). However, this
shows that the basic concept for the parser is working.
Nothing is actually done yet other than parsing the built-in property
list to property list items (the actual parser is just a skeleton), but
everything compiles
The property list specifies the base structures for which parser code
will be generated (along with any structures and enums upon which those
structures depend). It also defines option specialized parsers for
better control.
It worked as a proof of concept, but as the code itself needs to be a
bit smarter, it would be a lot smarter to break up that code to make it
easier to work on the individual parts.
The tables are generated from the enums pulled out of the vulkan headers
using a ruamoko program (thanks to its reflection capabilities). They
will be used for parsing property lists used to create render passes and
pipelines.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.
This allows for the four combinations of shift and control. Not
bothering with alt because alt-f4 closes my xterm (bbkeys from the looks
of it: it grabs a bunch of Mod1-* keys).
It turned out I needed access to the physical device from a buffer
object, so rather than storing the vulkan logical device directly in
buffer (and other) objects, store the qfv logical device.
I added Sys_RegisterShutdown years ago and never really did anything
with it: now any system that needs to be shutdown can ensure it gets
shutdown on program exit, and in the correct order (ie, reverse to init
order).
This makes sure that some unchecked event doesn't cause a lockup.
However, blocking input is really not the way to go: need to implement a
state machine and use non-blocking event reads.
Or really, allow it if the user specifically requests it: the default is
blocked. Modern systems (particularly displays) do not really like
changing resolution, so doing so by default seems rather wrong.
This makes sure that some unchecked event doesn't cause a lockup.
However, blocking input is really not the way to go: need to implement a
state machine and use non-blocking event reads.
Or really, allow it if the user specifically requests it: the default is
blocked. Modern systems (particularly displays) do not really like
changing resolution, so doing so by default seems rather wrong.
It's just a wrapper around hashtab, but it makes checking if a string is
in a set easy. Way overkill when only a few extensions are enabled, but
more might come later.
This paves the way for clean initialization of the Vulkan renderer, and
very much cleans up the older renderer initialization code as gl and sw
are no longer intertwined.
This fixes the segfault and pushes things very much in the desired
direction of proper system independence for rendering and presentation
separation (though things were headed in the right direction before).
Things are still a mess, but a proper cleanup will be a lot of work and
will, really, involve properly splitting quake-specific code* out from
the rest of the renderer.
* data loading and format specific stuff
A single graphics-capable queue should be enough for now. However, I'm
not sure I'm happy with a lot of the code: it's a bit difficult to write
flexibly configured code for Vulkan (or seems to be at this stage),
especially in C.
After messing with SIMD stuff for a little, I think I now understand why
the industry went with xyzw instead of the mathematical wxyz. Anyway, this
will make for less pain in the future (assuming I got everything).
I'm not certain despair actually meant for the break to be there. It
certainly would have sped up the game a bit but at the expense of proper
blood trails in the software renderers.
These are the ones where I could easily make scan-build happy. They do seem
to be potential holes where invalid data in one place could result in use
of uninitialized values.
While scan-build wasn't what I was looking for, it has proven useful
anyway: many of the sizeof errors were just noise, but a few were actual
bugs (allocating too much or too little memory).
Also fix a bug where despite supporting 32 buttons, only 18 were actually
supported, and a similar issue for the number of axes.
My saitek x52 has 34 buttons and 10 axes. Whee.
It seems mesa still has the bug where non-array attributes don't work
when set as attribute 0, and that the allocation order changed sometime
since I last tested with mesa. This fixes the black world and flickering
alias models on my eeepc.
So far, alias model rendering is the only victim, but things are working,
even if only color map lookup and fog blending are broken out at this
stage.
I expect the effect naming scheme will go through some changes until I'm
happy with it.
Again, based on The OpenGL Shader Wrangler. The wrangling part is not used
yet, but the shader compiler has been modified to take the built up shader.
Just to keep things compiling, a wrapper has been temporarily created.
Once and for all: remove the default and move the Sys_Error outside the
switch (changing appropriate breaks to returns). Now gcc will let me know
when I forget to update the switch statements.
I'd missed a set of bit->lightnum conversions that resulting in lightnum
becoming much greater than 128 and thus trashing memory when the surface
was marked.
Johnny's number->J_AXISn mapping is preserved, but I had intended for any
key to be supported (J_AXISn was just to ensure free keys were available).
This gives both methods (and some range checking on the axis button
number).
Thanks to leilei being a diehard sw quake fan, and MH being the hacker he
is, engoo's vid_win.c drops Scitech's MGL :) (I really did not want to
resurrect that). However, I've modified it so it /compiles/ in QF: ripped
out the menu code, ripped out the input handling (that's in in_win.c) and
started trying to get it to work for vid_render. The clients at least link,
but I'm certain they'll segfault (GPF?).
The win clients are the native windows (NOT sdl!! *twitch*). Things are
already looking on the up: only three errors in in_win.c. I'm not looking
forward to vid_win.c (ex vid_wgl.c), though.
First, this completely smashes joystick input: it will not work (though it
doesn't crash). This is because there is, as of yet, no means to configure
the system.
Each joystick axis has:
- per-axis amplification (both pre and post).
- per-axis offset (offset applied after pre-amp but before post amp)
- selectable destination:
- linear delta: position and angles (as before)
- axis button: if the value crosses the threshold, the given key is
pressed or released as appropriate.
The axis amplification still uses joy_amp and joy_pre_amp (and
in_amp/in_pre_amp), but now also has the per-axis settings.
The per-axis offset is most useful for axis buttons. For example, the xbox
360 controller triggers are analong but go "all the way to negative on 0
state". Offsetting the input keeps axis button thresholds simple.
Amplification and offset is applied before anything is done with the axis
value. The formula is:
joy_amp * in_amp * axis-amp *
(offset + value * joy_pre_amp * in_pre_amp * axis-pre_amp)
Axis button thresholds are very simple: if the sign of the value is the
same as the sign of the threshold and abs(value) >= abs(threshold), the
button is pressed. While multiple thresholds and keys can be placed on an
axis, only one can be pressed at a time. The threshold furthest from 0
wins.
The seed is currently 0xdeadbeef, but I intend on fixing that soon. Now the
particle velocities and origins use fully independent bits (though a big
chunk is wasted right now).
This is a quick fix until I get a random number generator into QF.
Mingw's RAND_MAX is only 0x7fff and so the (((rnd >> 10) & 63) - 31.5) / 63.0
used for the z component of origin and velocity would never go positive.
For now, change the 10 to 9 (reusing another bit from Y). I plan on
implementing a full 32-bit PRNG in QF so we always have a reliable
generator.
Now the user can create and destroy IMTs at will, though currently
destroying IMTs is currently all or nothing (imt_drop_all).
An IMT is created via imt_create which takes the keydest name (key_game
etc), the name of the IMT (must be unique for all IMTs) and optionally the
name of the IMT to which the key binding search will fall back if there is
no binding in the current IMT, but must be already defined and on the same
keydest. This means that IMTs now have user determined fallback paths. The
requirements for the fallback IMT prevent loops and other weird behaviour.
Actual key binding via in_bind is unaffected. This is why the IMT name must
be unique across all IMTs.
The "imt" command works with the key_game keydest, but imt_keydest is
provided for specifying the active IMT for a specific keydest.
At startup, default IMTs are setup to emulate the previous static IMTs so
old configs will continue to work (mostly). New config files will be
written with commands to drop all of the current IMTs and build new ones,
with the bindings and active IMT set as well.
This fixes the status bar refresh issues in sw. The problem was that with
two viddef's hanging around, things got a little confused and recalc_refdef
wasn't getting into the renderer.
in_clear <imt>... where each argument to in_clear is an imt identifier. If
any identifiers are incorrect, the incorrect ones will be displayed and no
tables will be cleared. All or nothing.
It seems that SDL_SetColors causes a page flip, so VID_SetPalette only
queue a palette change (by checking for the need to change and storing the
requested palete) and VID_Update now checks for a queued palette change and
updates SDL's palette if required. This fixes the flickering console in sw
-sdl introduced by the cshift/centerprint change.
It was properly cleared after drawing water chains and sky chains, but I
had missed normal surfaces. It took the use of the same texture for both
normal surfaces and water surfaces to trigger the bug. Thanks go to Simon
'Sock' O'Callaghan and his In The Shadows mod.
vidmode is starting to show its age. Modern X doesn't need a config file,
and when one is not available, the list of available resolutions is quite
strange. Time to look into randr support.
The depth limits in the gl and glsl renderers and in the trace code really
bothered me, but then the fix hit me: at load-time, recurse the trees
normally and record the depth in the appropriate place. The node stacks can
then be allocated as necessary (I chose to add a paranoia buffer of 2, but
I expect the maximum depth will rarely be used).
The attached patch (against quakeforge git) changes the [con]width,
[con]height, and most importantly the rowbytes members of viddef_t
from unsigned to signed int, like in q2. This allows for a properly
negative vid.rowbytes which may be needed in, e.g. a DIB sections
windows driver if needed. Along with it, I changed a few places
where unsigned int is used along with comparisons against the relevant
vid.* members.
One thing I am not 100% sure is the signedness requirements of
d_zrowbytes and d_zwidth: q2 has them as unsigned but I am not sure
whether that is because they are needed as unsigned or it was just an
oversight of the id developers. They do look like they should be OK
as signed int to me, though: comments?
==
Note from Bill Currie: I had to do some extra changes as many
signed/unsigned comparisons were somehow missed.
It turns out the expected orientation of the sky cube is exactly that of
Blender's default cube looked at from the front view (num-1) and the front
face being the nearest face. This put's Marcher's sun nicely in the view
when exiting the cave.
Rearrange the sky_suffix and sky_coords arrays and remove the sky_target
array such that the faces can be loaded using
GL_TEXTURE_CUBE_MAP_POSITIVE_X + i (apparently certain drivers break if
the faces aren't loaded in the correct order).
Also, the nomalization of the direction vector in the fragment isn't
necessary.
All of the nastiness is hidden in bspfile.c (including the old bsp29
specific data types). However, the conversions between bsp29 and bsp2 are
implemented but not yet hooked up properly. This commit just gets the data
structures in place and the obvious changes necessary to the rest of the
engine to get it to compile, plus a few obvious "make it work" changes.
The setup had been lost at some stage, thus shadows were always directly
under the entity. Unlike the original quake shadow code, the vector is
correctly transformed into the entity's space.
I finally found the cause of Despair's gl shadows non-rendering+segfault...
the shadow code expected triangle fans and strips but was getting simple
triangles. Oops.
Nothing in the main program currently uses Key_Progs_Init, so the object
file wasn't getting pulled into the link. However, it's quite necessary for
the client console plugin :/
LordHavoc had made lighting positive for sw32, but I had done something in
the plugin code that broke that (probably something to do with the
colormap loading). Going back to id's original code fixes the issue.
This reverts commit e170f4ee75.
It turns out I messed up something in the patch. I noticed the problem
while playing digs04.bsp: many sub-model surfaces, particularly those with
animated textures, were not being transformed correctly. As this patch did
not make a large performance difference, it's probably better to just
revert it. I might revisit it later.
Since the backtile is loaded into a scrap and used as a subtexture, we
can't use GL's texture wrapping, thus do the wrapping ourselves. There are
some minor issues with the wrong part of the scrap being drawn: need to
investigate where the bug is (vrect, make_quad, etc).
It turns out glsl, sw and sw32 weren't getting any benefit from R_CullBox
because the frustum wasn't setup :P. Get another 8% out of bigass1
(174->184fps). bigass1 now runs 2x as fast as it did before I started this
optimisation run :)
This severely reduces the calles to BindTexture, and more importantly,
glUseProgram, EnableVertexAttribArray etc. The biggest changes are:
o icons and text are all in the one giant texture
o icons and text are mixed in the one queue
This gave ~9% speedup for bigass1 (159->174fps).
gl, sw and sw32 use blend palettes, so share the code. This also abandons
the optimization for transforming verts in sw (had all sorts of problems
anyway). sw still doesn't work, though.
There are still many issues to sort out, but the basics are working.
Problems:
rendered fullbright (no lighting done)
normals are ignored
extra textures (glow etc) not used/loaded
4 models on the screen don't seem to be a problem.
Though the bsp loader doesn't yet support colored lighting, the ambient
light will be colored when it does. With this, I guess iqm model support is
done for glsl until I figure out how I want to do dual quaternion support.
There's still a problem with his finger tips and feet, but the rest of his
limbs seem to be working well. Much thanks to Spike for encouraging me to
do a dump of the matices that are actually sent to the card.
It turns out that animated joints remain relative right up to the last
moment.
This avoids sending invalid pose data to the renderer. The symptom was a
vertex array offset higher than the vertex array size. Discovered by calim
of nouveau while he was debugging a driver problem found by QF. Many
thanks.
While this particular tigger of the real bug was caused by 659d95221e
(hopefully fix both the "get stuck waiting for 3d" bug and the null
worldmode bug.), the real bug was lurking in the code since the dawn of
time (from sw32's perspective). This fix is as per LordHavoc's suggestion
(heh, despite the years, he knows his code), but I spent the time hunting
down the trigger to understand just what was going on.
It turns out that (0,0,0) is too close to a wall (probably on, but the
slight default offset is too close) and the above commit changed the first
rendered frame to be before the player origin was set rather than after.
This fix feels correct to me because noclipping around with the sw32
renderer would probably hit the same bug with a bit of bad luck. Thus
ensure the index resulting from zi never exceeds 65535.
While checking the shaders to see if there might be anything obvious to
work around the current nouveau shader issues, I found a 1 that should have
been a 1.0. I'm surprised it ever compiled.
It doesn't seem to have any useful effect in QF (even before the plugin
project) other than setting the number of frames to update. I'm not sure if
it's a useless variable or one where the user is supposed to match it to
the system configuration. Anyway, with this, the glsl plugin now works.
This allows the vid module to load the render module and access render
specific functions before the renderer initializes, which happens to need
an initialized vid module...
The renderer now gets initialized and things sort of work (qw-client will
idle, though nothing is displayed). However, as the viddef stuff is broken,
it segs on trying to run the overkill demo.
Still, nothing will work: no plugins are loaded and they're all broken
anyway.
glx, sgl, glslx etc are going away, just the basics will be built: fbdev
(probably go away eventually), sdl, x11 and hopefully someday win. That's
actually the only reason anything links.
Where possible, symbols have been made static, prefixed with glsl_/GLSL_ or
moved into the code shared by all renderers. This will make doing plugins
easier but done now for link testing. The moving was done via the gl
commit.
Where possible, symbols have been made static, prefixed with gl_/GL_ or
moved into the code shared by all renderers. This will make doing plugins
easier but done now for link testing.
QF will now load a single image with (${skyname}_map.*) using blender's
layout. That is, 3x2 with the top row being back, right, front and the
bottom row being bottom, top, left.
Just about to do a release, and I realized windows users wouldn't have any
way of checking out the new renderer. I'll add wglsl when I get a chance to
do some testing.
o All instances of LIBADD/LDADD have a corresponding DEPENDENCIES
specificatiion.
o libraries now use a lib_ldflags macro to keep things consistent
o duplication of source/lib names has been minimized (particularly in
the libraries; more work needs to be done for the executables)
o automake spec blocks have been organized (again, more work needs to be
done for the executables)
Most subsystems that depend on other subsystems now call the init functions
themselves. This makes for much cleaner client initialization (more work
needs to be done for the server).
I'd actually done this the first time, but then got confused and forgot the
waterchain works with multiple textures. This is actually the right place
as all transparent surfaces need to be sorted irrespective to their
textures. Really, waterchain needs to be renamed.
If the map got reloaded but the current leaf didn't change the world (and
most entities) didn't get drawn. Forcing a vis update by first setting
r_viewleaf to null and marking surfaces does the trick :)
The renderer should now be free of any direct access to client code. Even
3d rendering is now done via a function pointer.
The cshift code is done as a 2d screen function.
This is a rather "evil" hack because GLES doesn't seem to need
GL_VERTEX_PROGRAM_POINT_SIZE, but GL does, and all my work is currently
done in GL rather than GLES. Point particles now work, but the sizes are
all wrong.
Using quads requires 4 elements, but triangles require 6. I'd gotten the
element array setup right, but I'd forgotten to tweak vacount when drawing
the particles.
I'm not sure if there's a bug in mesa, or if I'm doing something wrong, but
GL_POINTS doesn't seem to be working properly. I get the points, but
writing to gl_PointSize doesn't make a difference despite the size range
being 1-255.
Unfortunately, the maximum point size on Intel hardwar seems to be 1, so I
can't tell if the colors are right.
This is largely just a hacked version of GL's particle code.