-999999 seems to be a hold-over from the software renderer passed
through both gl renderers. I guess it didn't matter in the gl renderers
due to various draw hacks, but it made quite a difference in vulkan.
Fixes the view model covering the hud.
Quake just looked wrong without the view model. I can't say I like the
way the depth range is hacked, but it was necessary because the view
model needs to be processed along with the rest of the alias models
(didn't feel like adding more command buffers, which I imagine would be
expensive with the pipeline switching).
Without shadows, this is quite the cheat, but noclip is a cheat anyway,
so probably not that big a deal. It does, however, make noclip usable
for debugging.
Since vulkan supports 32-bit indexes, there's no need for the
shenanigans the EGL-based glsl renderer had to go through to render bsp
models (maps often had quite a bit more than 65536 vertices), though the
reduced GPU memory requirements of 16-bit indices does have its
advantages.
Any sun (a directional light) is in the outside node, which due to not
having its own PVS data is visible to all nodes, but that's a tad
excessive. However, any leaf node with sky surfaces will potentially see
any suns, and leaf nodes with no sky surfaces will see the sun only if
they can see a leaf that does have sky surfaces. This can be quite
expensive to calculate (already known to be moderately expensive for
just the camera leaf node (singular!) when checking for in-map lights)
Getting close to understanding (again) how it all works. I only just
barely understood when I got vulkan's renderer running, but I really
need to understand for when I modify things for shadows. The main thing
hurdle was tinst, but that was dealt with in the previous commit, and
now it's just sorting out the mess of elechains and elementss.
Its sole purpose was to pass the newly allocated instsurf when chaining
an instance model (ammo box, etc) surface, but using expresion
statements removes the need for such shenanigans, and even makes
msurface_t that little bit smaller (though a separate array would be
much better for cache coherence).
More importantly, the relevant code is actually easier to understand: I
spent way too long working out what tinst was for and why it was never
cleared.
The renderer's LineGraph now takes a height parameter, and netgraph now
uses cl_* cvars instead of r_* (which never really made sense),
including it's own height cvar (the render graphs still use
r_graphheight).
The render plugins have made a bit of a mess of getting at the data and
thus it's a tad confusing how to get at it in different places. Really
needs a proper cleanup :(
conwidth and conheight have been moved into vid.conview (probably change
the name at some time), and scr_vrect has been replaced by a view as
well. This makes it much easier to create 2d elements that follow the
screen size (taking advantage of a view's gravity) which will, in the
end, make changing the window size easier.
It now processes 4 pixels at a time and uses a bit mask instead of a
conditional to set 3 of the 4 pixels to black. On top of the 4:1 pixel
processing and avoiding inner-loop conditional jumps, gcc unrolls the
loop, so Draw_FadeScreen itself is more than 4x as fast as it was. The
end result is about 5% (3fps) speedup to timedemo demo1 on my 900MHz
EEE Pc when nq has been hacked to always draw the fade-screen.
qwaq-curses has its place, but its use for running vkgen was really a
placeholder because I didn't feel like sorting out the different
initialization requirements at the time. qwaq-cmd has the (currently
unnecessary) threading power of qwaq-curses, but doesn't include any UI
stuff and thus doesn't need curses. The work also paves the way for
qwaq-x11 to become a proper engine (though sorting out its init will be
taken care of later).
Fixes#15.
This refactors (as such) keys.c so that it no longer depends on console
or gib, and pulls keys out of video targets. The eventual plan is to
move all high-level general input handling into libQFinput, and probably
low-level (eg, /dev/input handling for joysticks etc on Linux).
Fixes#8
Standard quake has just linear, but the modding community added inverse,
inverse-square (raw and offset (1/(r^2+1)), infinite (sun), and
ambient (minlight). Other than the lack of shadows, marcher now looks
really good.
Because LoadImage uses Hunk_TempAlloc, the face images need to be copied
individually. Really, what's neeeded is to be able to load the image
data into a pre-allocated buffer (ideally, the staging buffer for
vulkan, but that's for later).
Mostly, this gets the stage flags in with the barrier, but also adds a
couple more barrier templates. It should make for slightly less verbose
code, and one less opportunity for error (mismatched barrier/stages).
This gets the shaders needed for creating shadow maps, and the changes
to the lighting pipeline for binding the shadow maps, but no generation
or reading is done yet. It feels like parts of various systems are
getting a little big for their britches and I need to do an audit of
various things.
The built up "path" name of the handle resource was not always surviving
the intervening call to cexpr_eval_string (in particular, when other
handles were created in the process of creating a handle). Rather than
simply increase the number of va buffers (where would it end?), just
regenerate the path when adding the new handle. It's probably quick
enough, and the code is not usually not on a critical path.
I was reading about multi-pass rendering on mobile devices
(https://developer.oculus.com/blog/loads-stores-passes-and-advanced-gpu-pipelines/)
and discovered that I had used the wrong flags (but then, I think Graham
Sellers had, too, since used his Vulkan Programming Guide as a
reference). Doesn't seem to make any difference on desktop, but as
there's no loss there, but potential gains on mobile, I'd say it's a
win.
I'm not sure that the mismatch between refdef_t and the assembly defines
was a problem (many fields unused), but the main problem was due to
execute permission on the pages: one chunk of asm was in the data
section, and the patched code was not marked as being executable (due to
such a thing not existing when quake was written).
This ensures that fov_y is not calculated until after the render view
size is known and thus doesn't become some crazy angle (that happens to
result in a negative tan). Fixes upside-down-quake :)
vid.aspect is removed (for now) as it was not really the right idea (I
really didn't know what I was doing at the time). Nicely, this *almost*
fixes the fov bug on fresh installs: the view is now properly
upside-down rather than just flipped vertically (ie, it's now rotated
180 degrees).
Not only does it makes sense to centralize the setting of viewport and
scissor, but it's actually necessary in order to fix the upside-down
rendering on windows.
Only 64-bit windows is tested, and there are still various failures, but
QF is limping along in windows again.
nq-sdl works for sw, and sw32, gl and glsl are mostly black (but not
entirely for gl?), vulkan is not supported with sdl.
nq-win works for sw and sw32, and sort of for vulkan (very dark and
upside-down?). gl and glsl complain about vid mode,
qw-client-[sdl,win] seem to be the same, but something is wrong with the
console (reading keyboard input).
While this caused some trouble for pr_strings and configurable strftime
(evil hacks abound), it's the result of discovering an ancient (from
maybe as early as 2004, definitely before 2012) bug in qwaq's printing
that somehow got past months of trial-by-fire testing (origin understood
thanks to the warning finding it).
This separate the FOV calculations from other refdef calcs, cleaning up the
renderer proper and making it easier for other parts of the engine (eg,
csqc) to update the fov.
Loading is broken for multi-file image sets due to the way images are
loaded (this needs some thought for making it effecient), but the
Blender environment map loading works.
They're unlit (fullbright, but that's nothing new for quake), but
working nicely. As a bonus, sort out the sky pass (forced to due to the
way command buffers are used).
There were actually several problems: translucency wasn't using or
depending on the depth buffer, and the depth buffer wasn't marked as
read-only in the g-buffer pass. Getting that correct seems to have given
bigass1 a 0.5% boost (hard to say, could be the usual noise).
While being able to write pipeline specs like this was the end goal of
the parsing sub-project, I didn't realize it was already usable. This
sure makes going through the pipeline specs much easier.
That was... easier than expected. A little more tedious that I would
have liked, but my scripting system isn't perfect (I suspect it's best
suited as the output of a code generator), and the C side could do with
a little more automation.
Other than dealing with shader data alignment issues, that went well :).
Nicely, the implementation gets the explicit scaling out of the shader,
and allows for a directional flag.
I never liked that some of the macros needed the type as a parameter
(yay typeof and __auto_type) or those that returned a value hid the
return statement so they couldn't be used in assignments.
Still "some" more to go: a pile to do with transforms and temporary
entities, and a nasty one with host_cbuf. There's also all the static
block-alloc lists :/
Light styles and shadows aren't implemented yet.
The map's entities are used to create the lights, and the PVS used to
determine which lights might be visible (ie, the surfaces they light).
That could do with some more improvements (eg, checking if a leaf is
outside a spotlight's cone), but the concept seems to work.
This is the first step towards component-based entities.
There's still some transform-related stuff in the struct that needs to
be moved, but it's all entirely client related (rather than renderer)
and will probably go into a "client" component. Also, the current
components are directly included structs rather than references as I
didn't want to deal with the object management at this stage.
As part of the process (because transforms use simd) this also starts
the process of moving QF to using simd for vectors and matrices. There's
now a mess of simd and sisd code mixed together, but it works
surprisingly well together.
It's not used yet as work needs to be done to better support generic
entities, but this is the next step to real-time lighting (though, to be
honest, I expect it will be too slow to be usable).
There's still the memory management itself to clean up, but the main
code no longer uses any static/global variables (holdover from when the
function was recursive rather).
The static libs are used to build the plugins, but make it easy to use
only those modules needed for tests. Fixes the link error when running
"make check" with non-static plugins.
Static lights are yet to come (so the screen is black most of the time),
but dynamic lights work very nicely (and look very good) despite the
falloff being incorrect.
While I could reconstruct the position from the screen coords and depth,
this is easier and good enough for now. Reconstruction is an
optimization thing.
Lighting doesn't actually do lights yet, but it's producing pixels.
Translucent seems to be working (2d draw uses it), and compose seems to
be working.
This gets the alias model render pass and pipeline passing validation.
I don't know why I didn't add the subpass field to the
VkGraphicsPipelineCreateInfo parser def, though it could be I simply
missed it, or I thought I wouldn't need it at the time.
Due to wanting to access array sizes when parsing uint32_t type values,
parse_uint32_t needs to handle size_t values even though it throws out
any excess bits.
After getting lights even vaguely working for alias models, I realized
that it just wasn't going to be feasible to do nice lighting with
forward rendering. This gets the bulk of the work done for deferred
rendering, but still need to sort out the shaders before any real
testing can be done.
Never really wanted in the first place (back when I did the plugin
renderers), but I didn't feel like doing the required work to avoid it
at the time. At least with Vulkan being a fresh start in an environment
that's already plugin-friendly, there was no real work involved. I'll
get to the other renderers eventually (especially now that I know gdb
does the right thing when there are multiple functions with the same
name).
It turns out I had conflated frame buffers with frames and wound up
making a minor mess when separating the number of frames the renderer
could have in flight from the number of swap-chain images. This is the
first step towards correcting that mistake.
It's not entirely there yet, but the basics are working. Work is still
needed for avoiding duplication of objects (different threads will have
different contexts and thus different tables, so necessary per-thread
duplication should not become a problem) and general access to arbitrary
fields (mostly just parsing the strings)
The node struct was 72 bytes thus two cache line. Moving the pointer
into the brush model data block allows nodes to fit in a single cache
line (not that they're aligned yet, but that's next). It doesn't seem to
have made any difference to performance (at least in the vulkan
renderer), but it hasn't hurt, either, as the only place that needed the
parent pointer was R_MarkLeaves.
It's not quite as expected, but that may be due to one of msaa, the 0-15
range in the palette not being all the way to white, the color gradients
being not quite linear (haven't checked yet) or some combination of the
above. However, it's that what should be yellow is more green. At least
the zombies are no longer white and the ogres don't look like they're
wearing skeleton suits.
Doesn't seem to make much difference performance-wise, but speed does
seem to be fill-rate limited due to the 8x msaa. Still, it does mean
fewer bindings to worry about.
This is a big step towards a cleaner api. The struct reference in
model_t really should be a pointer, but bsp submodel(?) loading messed
that up, though that's just a matter of taking more care in the loading
code. It seems sensible to make that a separate step.
I've decided that alias model skins should be in a single four-level
array texture rather than spread over four textures, but there's no way
I want to write that code again: getting it right was hard enough the
first time :P
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
I had messed up my index array creation, but once that was fixed the
textures worked well other than a lot of pixels are shades of grey due
to being in the top or bottom color map range.
I don't really know why (I need to do some research), but this fixes the
lockups when accessing the matrices UBO. It has made a mess of my
carefully designed uniform binding layout, so I hope I can get bound
descriptor sets working the way I want, but I really need to progress on
the rest of the project.
It's a tad bogus as it's the lights close to the camera, but it should
at least be a good start once things are working. There's currently
something very wrong with the state of things.
This makes tex_t more generally useable and probably more portable. The
goal was to be able to use tex_t with data that is in a separate chunk
of memory.
The sky texture is loaded with black's alpha set to 0. While this does
hit both layers, the screen is cleared to black so it shouldn't be a
problem (and will allow having a skybox behind the sheets).
Glow map and sky sheet and cube need to wait until I can get some
default textures going, but the world is rendering correctly otherwise
(though a tad dark: need to do a gamma setting).
It now uses the ring buffer code I wrote for qwaq (and forgot about,
oops) to handle the packets themselves, and the logic for allocating and
freeing space from the buffer is a bit simpler and seems to be more
reliable. The automated test is a bit of a joke now, though, but coming
up with good tests for it... However, nq now cycles through the demos
without obvious issue under the same conditions that caused the light
map update code to segfault.
Needed to use an rgba format to use floats (and optimal layout), but
having to set the alpha to 1 even for full-dark luxels is not very
efficient. Better to just ignore the alpha in the shader. Fixes the
occasional transparent surface in shadowed areas.
Many surfaces are missing (I suspect it's due to transform stage
management in the index emitter), and currently only the light maps are
rendered (still not binding the correct textures), but the basics are
working.
Vulkan validation (quite rightly) doesn't like it when the flush range
goes past the end of the buffer, but also doesn't like it when the flush
range isn't cache-line aligned, so align the size of the buffer, too.
Copying data from the wrong buffer was the cause of the corrupted brush
model vertices, and then lots of little errors (mostly forgetting to
multiply by bpp) for textures.
I had originally planned on mixing the stage management with general
texture support code like I did in glsl, but I think that was a mistake
and I did keep looking for scrap.[ch] when I wanted to edit something to
do with the scrap...
There's still a problem with the vertex data itself not getting sent to
the GPU properly, but vulkan is now happy with my tiny test map (which
required disabling skies entirely until I get null textures working).
This cleans up texture_t and possibly even improves locality of
reference when running through texture chains (not profiled, and not
actually the goal).
It optionally generates mipmaps, and supports the main texture types
(especially for texture packs), including palettes, but is otherwise
rather unsophisticated code. Needs a lot of work, but testing first.
This is more correct as the environment (X11 etc) might provide more
swapchain images than we want: 3 frames in flight is generally
considered a good balance between saturating the hardware and latency.
Cleans up global space and makes it usable in multiple contexts. Also,
max quads dropped to 32k as each frame now has its own vertex buffer to
avoid issues with vertex overwrites (which I have seen). However, all
vertex buffers are in the one memory/buffer object (using offsets) and
the index buffer has been moved into a device-local memory object.
I think I did two as a bit of a ring buffer, but the new ring buffer
system used inside a staging buffer makes it less necessary. Also, the
staging buffer is now a fair bit bigger (4M is probably not really
enough)
This allows the array in which the command buffers are allocated to be
allocated on the stack using alloca and thus remove the need to
malloc/free of relatively small chunks.
The console background is missing, and scaled vs unscaled (currently
always scaled) 2d, but otherwise everything seems to work. Lots of
places to clean up, though.
Draw now has its own staging buffer to use with its scrap. Also, a few
fixes were needed for the staging buffer and scrap flush routines.
Other than some synchronization issues with draw scrap flushing
(currently worked around with a fence-wait) things seem to be working
nicely.
The scrap texture did very good things for the glsl renderer and the
better control over data copying might help it do even better things for
vulkan, especially with lots of little icons.
It's never actually used (the texture can be fetched using
GLSL_ScrapTexture) and gets in the way of sharing the scrap system with
the vulkan renderer.
r_screen because of SCR_UpdateScreen, and r_cvar because the cvars
really should never have been in a plugin in the first place (and
r_screen needed access).
First pixels! This was a nightmare of little issues that the validation
layers couldn't help with: incorrect input assembly, incorrect vertex
attribute specs. Though the layers did help with getting the queues
working. Still, lots of work to go but this is a major breakthrough as
I now have access to visual debugging for textures and the like.
Short wrappers for Draw functins are in vid_render_vulkan.c so the
vulkan context can be passed on to the actual functions. The 2D shaders
are set up similar to those in glsl, but with full 32-bit color (rgba)
support instead of paletted. However, the textures are not loaded yet,
nor is anything bound.
This necessitated hand-writing qfv_swapchain_t's descriptors as I don't
feel like getting that complicated with vkgen at this stage and it's not
really appropriate anyway? qfv_swapchain_t is meant to be read-only and
not parsed from a plist.
The prototypes for handle parsers needed to be changes because it turned
out "single" was inappropriate for handles as "single" allocates memory
for the parsed object, but handles must be written directly.
The way I wound up using the field meant that exprctx should not "own"
the hashlinks chain, but rather just point to it. This fixes the nasty
access errors I had.
Dependencies on vkparse.hinc were spreading through the code which I
didn't want as that removes a lot of the automation from the automake
files. This keeps all parser code internal to vkparse.c's scope, and any
accesses required for enum and struct (not yet) definitions can be
fetched by name.
Array and single type overrides now allow the parsing of the items
themselves to be customized. This makes it easy to handle arrays and
pointers to single items while also using custom specifications, rather
than relying entirely on the custom override.
QC's int type is named "integer" (didn't feel like changing that right
now), so special case it to be "int".
Output the parse func name (instead of "fix me").
Output a parse func for enums (needed for arrays of enums
(VkDynamicState)).
The static variable meant that Fog_GetColor was not thread-safe (though
multiple calls in the one thread look to be ok for now). However, this
change takes it one step closer to being more generally usable.
Patch found in an old stash.
I had missed the array declaration and thus initialized the pointer to
the offset array incorrectly. Didn't show up until I tried using
multiple offsets.
Shaders can be built as spv files and installed into
$libdir/quakeforge/shaders or as spvc files and compiled into the
engine. Loading supports $builtin/name to access builtin shaders,
$shader/path to access external standard shaders and quake filesystem
access for all other paths.
I had forgotten that msaa samples was governed by the driver (as a max)
and the renderpass setup code simply took the max. Thus why 1 vs 8
caused the display to render incorrectly.
It turned out the msaa setting defaulting to 1 instead of 8 was the
problem no idea why at this stage (need to read up on just how that
setting works). Once I understand just how it works, I'll rework the
msaa handling.
This gets renderpass parsing almost working (not hooked up, though). The
missing bits are support for expressions for flags (namely support for
the | operator) and references (eg $swapchain.format). However, this
shows that the basic concept for the parser is working.
Nothing is actually done yet other than parsing the built-in property
list to property list items (the actual parser is just a skeleton), but
everything compiles
The property list specifies the base structures for which parser code
will be generated (along with any structures and enums upon which those
structures depend). It also defines option specialized parsers for
better control.
It worked as a proof of concept, but as the code itself needs to be a
bit smarter, it would be a lot smarter to break up that code to make it
easier to work on the individual parts.
The tables are generated from the enums pulled out of the vulkan headers
using a ruamoko program (thanks to its reflection capabilities). They
will be used for parsing property lists used to create render passes and
pipelines.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.
It turned out I needed access to the physical device from a buffer
object, so rather than storing the vulkan logical device directly in
buffer (and other) objects, store the qfv logical device.
It's just a wrapper around hashtab, but it makes checking if a string is
in a set easy. Way overkill when only a few extensions are enabled, but
more might come later.
This paves the way for clean initialization of the Vulkan renderer, and
very much cleans up the older renderer initialization code as gl and sw
are no longer intertwined.
This fixes the segfault and pushes things very much in the desired
direction of proper system independence for rendering and presentation
separation (though things were headed in the right direction before).
Things are still a mess, but a proper cleanup will be a lot of work and
will, really, involve properly splitting quake-specific code* out from
the rest of the renderer.
* data loading and format specific stuff
A single graphics-capable queue should be enough for now. However, I'm
not sure I'm happy with a lot of the code: it's a bit difficult to write
flexibly configured code for Vulkan (or seems to be at this stage),
especially in C.
After messing with SIMD stuff for a little, I think I now understand why
the industry went with xyzw instead of the mathematical wxyz. Anyway, this
will make for less pain in the future (assuming I got everything).
I'm not certain despair actually meant for the break to be there. It
certainly would have sped up the game a bit but at the expense of proper
blood trails in the software renderers.
These are the ones where I could easily make scan-build happy. They do seem
to be potential holes where invalid data in one place could result in use
of uninitialized values.
While scan-build wasn't what I was looking for, it has proven useful
anyway: many of the sizeof errors were just noise, but a few were actual
bugs (allocating too much or too little memory).