Dependencies on vkparse.hinc were spreading through the code which I
didn't want as that removes a lot of the automation from the automake
files. This keeps all parser code internal to vkparse.c's scope, and any
accesses required for enum and struct (not yet) definitions can be
fetched by name.
Array and single type overrides now allow the parsing of the items
themselves to be customized. This makes it easy to handle arrays and
pointers to single items while also using custom specifications, rather
than relying entirely on the custom override.
I want to be able to use name references, but that requires string
items, so anything that would normally be dictionary or array (or
binary, even) would also need to accept string. This seemed to be the
cleanest solution. Any custom parser would then need to check the type
and act appropriately, but any inappropriate types have already been
pre-filtered by the standard parsers.
Care needs to be taken to ensure the right function is used with the
right arguments, but with these, the need to use qconj(d|f) for a
one-off inverse rotation is removed.
I forgot to right-shift the value so offsets were becoming 0 or 8
instead of 0-15. This fixes the management of small objects. It turns
out that after this fix, qfvis's problems were caused by fragmentation
in the windings. Need to revisit line allocation and use POT-specialized
pools.
I think the sub-line allocator falling over is the final source of
qfvis's leaks. It certainly causes a mess of the sub-lines. But having
some tests to get working sure beats scratching my head over qfvis :)
They're binned by powers of two (with in between sizes going to the
smaller bin should I make cache-line allocations NPOT (which I think
might be worthwhile). However, there seems to still be a bug somewhere
causing a nasty leak as now my hacked qfvis consumes 40G in less than a
minute.
The idea is to not search through blocks for an available allocation.
While the goal was to speed up allocation of cache lines of varying
cluster sizes, it's not enough due to fragmentation.
They take advantage of gcc's vector_size attribute and so only cross,
dot, qmul, qvmul and qrot (create rotation quaternion from two vectors)
are needed at this stage as basic (per-component) math is supported
natively by gcc.
The provided functions work on horizontal (array-of-structs) data, ie a
vec4d_t or vec4f_t represents a single vector, or traditional vector
layout. Vertical layout (struct-of-arrays) does not need any special
functions as the regular math can be used to operate on four vectors at
a time.
Functions are provided for loading a vec4 from a vec3 (4th element set
to 0) and storing a vec4 into a vec3 (discarding the 4th element).
With this, QF will require AVX2 support (needed for vec4d_t). Without
support for doubles, SSE is possible, but may not be worthwhile for
horizontal data.
Fused-multiply-add is NOT used because it alters the results between
unoptimized and optimized code, resulting in -mfma really meaning
-mfast-math-anyway. I really do not want to have to debug issues that
occur only in optimized code.
QC's int type is named "integer" (didn't feel like changing that right
now), so special case it to be "int".
Output the parse func name (instead of "fix me").
Output a parse func for enums (needed for arrays of enums
(VkDynamicState)).
The static variable meant that Fog_GetColor was not thread-safe (though
multiple calls in the one thread look to be ok for now). However, this
change takes it one step closer to being more generally usable.
Patch found in an old stash.
I had missed the array declaration and thus initialized the pointer to
the offset array incorrectly. Didn't show up until I tried using
multiple offsets.
Shaders can be built as spv files and installed into
$libdir/quakeforge/shaders or as spvc files and compiled into the
engine. Loading supports $builtin/name to access builtin shaders,
$shader/path to access external standard shaders and quake filesystem
access for all other paths.
I had forgotten that msaa samples was governed by the driver (as a max)
and the renderpass setup code simply took the max. Thus why 1 vs 8
caused the display to render incorrectly.
It turned out the msaa setting defaulting to 1 instead of 8 was the
problem no idea why at this stage (need to read up on just how that
setting works). Once I understand just how it works, I'll rework the
msaa handling.
The problem is that I needed to support dynamic types on operators (for
bit-field enums), had things working, but a bad edit messed things up
and I had to rebuild that bit of code. Missed one bit :P
It is capable of parsing single expressions with fairly simple
operations. It current supports ints, enums, cvars and (external) data
structs. It is also thread-safe (in theory, needs proper testing) and
the memory it uses can be mass-freed.
This was inspired by
Hoard: A Scalable Memory Allocator
for Multithreaded Applications
Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, Paul R.
Wilson,
It's not anywhere near the same implementation, but it did take a few
basic concepts. The idea is twofold:
1) A pool of memory from which blocks can be allocated and then freed
en-mass and is fairly efficient for small (4-16 byte) blocks
2) Tread safety for use with the Vulkan renderer (and any other
multi-threaded tasks).
However, based on the Hoard paper, small allocations are cache-line
aligned. On top of that, larger allocations are page aligned.
I suspect it would help qfvis somewhat if I ever get around to tweaking
qfvis to use cmem.
The calculation fails (produces NaN) if the vectors are anti-parallel,
but works for all other combinations. I came up with this implementation
when I discovered Unity's Quaternion.FromToRotation could did not work
with very small angles. This implementation will produce a usable
quaternion below 0.00255 degrees (though it will be slightly larger than
unit). Unity's failed such that I could see KSP's skybox snap while it
rotated around my test vessel.
The problem was caused by passing the index into the dtables array to
dtable_get which expects a handle. A handle is the ones-compliment
negative of the index which means that handle 0 is invalid (but 0 was
being passed... oops). Fixes the segfault when qw-client-x11 connects to
a server.
This gets renderpass parsing almost working (not hooked up, though). The
missing bits are support for expressions for flags (namely support for
the | operator) and references (eg $swapchain.format). However, this
shows that the basic concept for the parser is working.
The array has to be allocated using byte elements and thus the size of
the array is the number of bytes, but it needs to be the actual number
of elements in the array. Problem caused by not knowing the actual type
(and C not having type variables anyway).
Nothing is actually done yet other than parsing the built-in property
list to property list items (the actual parser is just a skeleton), but
everything compiles
The property list specifies the base structures for which parser code
will be generated (along with any structures and enums upon which those
structures depend). It also defines option specialized parsers for
better control.
It worked as a proof of concept, but as the code itself needs to be a
bit smarter, it would be a lot smarter to break up that code to make it
easier to work on the individual parts.
PL_ParseDictionary itself does only one level, but it takes care of the
key-field mappings and property list item type checking leaving the
actual parsing to a helper specified by the field. That helper is free
to call PL_ParseDictionary recursively.
The first line of the parsed item is stored and can be retrieved using
PL_Line. Line numbers not stored for dictionary keys yet. Will be 0 for
any items generated by code rather than parsed from a file or string.
The tables are generated from the enums pulled out of the vulkan headers
using a ruamoko program (thanks to its reflection capabilities). They
will be used for parsing property lists used to create render passes and
pipelines.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
This fixes the segfault when loading the menu progs. I had forgotten
that the menu code doesn't use PR_LoadProgs (I don't remember why.
Obsolete reason?).
When I ported SEB to python, I discovered that I apparently didn't
really understand the paper's description of the end condition and the
usage of the affine and convex sets for center testing. This cleans up
the test and makes SEB more correct for the cases that have less than 4
supporting points (especially when there are less than 4 points total).
Returning a string was a bad idea as it makes str_str difficult to use
with str_mid. (actually, iirc, it was the only reason I moved all
strings into progs memory... hmm).
This allows a debugger to do any symbol lookups and other preparations
between loading progs and the first code execution. .ctors are called as
per normal if debug_handler is not set.
In testing variable fw/precision in PR_Sprintf, I got a nasty reminder
of the limitations of the current progs ABI: passing @args to another QC
function does not work because the args list gets trampled but the
called function's locals. Thus, the need for a va_copy. It's not quite
the same as C's as it returns the destination args instead of copying
like memcpy, but it does copy the list from the source args to a
temporary buffer that is freed when the calling function returns.
This is the first step in reworking PR_Sprintf to use a state machine.
The goal is to make it more robust against errors and easier to extend
(eg, * width and precision).
And rename prd_exit to prd_terminate (the idea is the host will
terminate the VM). This makes it possible for the debugger to pause the
VM before any code, even a builtin function, is executed. Breaks the
debugger source window, but only because it's not updating on file
change (I think).
I decided I want events for VM enter/exit but enter needs to somehow
pass the function which will be executed (even if a builtin). A generic
void * param seemed the best idea, which meant the error string could be
passed via the param instead of a "global" string in the progs struct.
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.
While there was a breakpoint hook, it was for only breakpoints and more
was needed. Now there's a generic hook that is called for tracing,
breakpoints, watch points, runtime errors and VM errors, with the
"event" type passed as the first parameter and a data pointer in the
second.
This allows for the four combinations of shift and control. Not
bothering with alt because alt-f4 closes my xterm (bbkeys from the looks
of it: it grabs a bunch of Mod1-* keys).
The idea is to find th def that contains the address. Had to write my
own bsearch (well... lifted from wikipedia) because libc's is exact. The
defs are assumed to be sorted (which qfcc now ensures when it writes
progs and sym files).
Type encodings are used whenever they are available. For now, if they
are not, then everything is treated as void (which prints <void>, not
very useful). Most return statements and references to .return are now
very readable (excluding structs), and only params going through "..."
are a messy union.
The memset instructions now match the move* instructions other than the
first operand (always int). Probably breaks much, but fixed in next few
commits.
This returns the character (as an int) at the index. Equivalent to
string[index], but qc code doesn't have char-level access and not having
it means that strings can internally change to wchar without too much
fuss (maybe).
If a temp string is found in the return slot, PR_FreeTempStrings won't
delete the string. However, PR_PopFrame was blindly stomping on the
possibly surviving temp string with the push strings, which would cause
a leak.
This causes the block to be freed when the forward: handler returns
(assuming it's not yet another builtin). This is necessary so calling a
lot of forwarded messages in a loop doesn't leak memory (though it will
get freed eventually).
This "pushes" a temp string onto the callee's stack frame after removing
it from the caller's stack frame. This is so builtins can pass
auto-freed memory to called progs code. No checking is done, but mayhem
is likely to ensue if a string is pushed that was allocated in an
earlier frame.
With this, object's implementing forward:: seem to accept the message
well, including receiving all the original args (not quite sure how to
deal with them in ruamoko code just yet, though).
PR_AllocTempBlock() works the same way as PR_SetTempString(), except
that it takes a size parameter and always allocates (never tries to
merge). This is, in a way, abusing the string system, but I needed a way
to allocate a block of progs memory that would be automatically freed
when the current frame ended. The biggest abuse is the need to cast away
the const of PR_GetString()'s return value.
libr supplies an __obj_forward definition that links to a builtin, but
as it is the only def in its object file, it is readily replaceable by
an alternative Ruamoko implementation.
The builtin version currently simply errors out (rather facetiously),
but only as a stub to allow progs to load.
This should speed up ruamoko code somewhat as hash table lookups have
been replaced with direct array indexing. As a bonus, support for
message forwarding has been added (though not tested).
Move the semi-permanent resource initialisation into the module init and
the cleanup of those resources into cleanup. Makes actual runtime init
much easier to read.
Rather than relying on progs code version, use the string to determine
whether PR_Sprintf should behave as if floats have been promoted through
... I imagine I'll get to the rest of the server code at some stage.
With these two changes, nq-x11 works again (teleporters were the
symptom).
This is one step closer to implementing conformsToProtocol. However,
protocols are not yet initialized correctly: they are not registered,
nor are their selectors.
While the static initializer list pointer was not written previously,
the module struct always came immediately after the symbols struct, and
the module version has so far always been 0. Thus, the list pointer is
correctly 0 for older progs and there's no need for a version bump.
With this, the VA is very close to being safe to use in a threaded
environment (so long as each VM is used by only one thread). Just the
debug file hash and source paths to sort out.
Other than consistency with printf(), I'm not sure why we went with the
printed size as the return value; returning the resultant strings makes
much more sense as dsprintf() (etc) can then be used as a safe va()
Other than its blocking of access to certain files, it really wasn't
that useful compared to the functions in qfs, and pointless with access
to qfs anyway.
The progs execution code will call a breakpoint handler just before
executing an instruction with the flag set. This means there's no need
for the breakpoint handler to mess with execution state or even the
instruction in order to continue past the breakpoint.
The flag being set in a progs file is invalid.
For technical reasons (programmer laziness), qfcc does not fix up local
def type encodings when writing the debug symbols file (type encoding
location not readily accessible).
The debug subsystem now uses the resources system to ensure it cleans
up, and its data is now semi-private. Unfortunately, PR_LoadDebug had to
remain public for qfprogs because using PR_RunLoadFuncs would cause
builtin resolution to complain.
It is now set to 0 when progs are loaded and every time
PR_ExecuteProgram() returns. This takes care of the default case, but
when setting parameters, pr_argc needs to be set correctly in case a
vararg function is called.
PR_SaveParams() is required for implementing the +initialize diversion
used by Objective-QuakeC because builtins do not have local def spaces
(of course, a normal stack calling convention would help). However, it
is entirely possible for a call to +initialize to trigger another call
to +initialize, thus the need for stacking parameter stashes. As a
bonus, this implementation cleans up some fields in progs_t.
The initial code was pretty much a port of the code in the editor I
wrote 25 years ago. Either I didn't think of the optimization back then,
or I tried to implement it, failed, and figured it wasn't worth it
(despite using it on a 386dx33). However, I noticed it now and it was
easy enough to get working, and it's always good to not do something
that's not needed.
When the substring is the tail of the supplied string, return a
"pointer" to within the supplied string rather than a new "return"
string. This means that tail-end substrings of string constants are
themselves constants.
The engine now requires non-v6 progs to store the log2 alignment for the
param struct in .param_alignment.
PR_EnterFunction is clearer and possibly more efficient.
Only as scalars, I still need to think about what to do for vectors and
quaternions due to param size issues. Also, doubles are not yet
guaranteed to be correctly aligned.