- Revert "- Partially fixed the 3d floors + fogboundary issue. There's still an issue when a sprite appears in front of a fog boundary, but because this is already a huge visual improvement I am going to go ahead and push this."
This reverts commit 7e292fbfec.
It now works the following way:
(0) - Force off (ZDoom defaults)
(1) - Force on (Doom defaults)
(2) - Auto off (Prefer ZDoom defaults - if DEHACKED is detected with no ZSCRIPT it will turn on) (default)
(3) - Auto on (Prefer Doom defaults - if DECORATE is detected with no ZSCRIPT it will turn off)
For some files that had the Doom Source license attached but saw heavy external contributions over the years I added a special note to license all original ZDoom code under BSD.
This was very poorly done without ever addressing the issues a composite render style can bring, it merely dealt with the known legacy render styles.
The same, identical code was also present in two different places.
The oversight that AlterWeaponSprite overrode even forced styles was also fixed.
OpenGL is not implemented yet but with the problems eliminated should be doable now.
I have no idea why they were even in there, as they intentionally circumvented all GC related features - they declared themselves fixed if prone to getting collected, they all used OF_YesReallyDelete when destroying themselves and they never used any of the object creation or RTTI features, aside from a single assert in V_Init2.
Essentially they were a drag on the system and OF_YesReallyDelete was effectively added just to deal with the canvases which were DObjects but not supposed to behave like them in the first place.
- added a few access functions for FActorInfo variables.
With PClassActor now empty the class descriptors can finally be converted back to static data outside the class hierarchy, like they were before the scripting merge, and untangle the game data from VM internals.
This allows using the UI scale or its own value, like all other scaling values.
In addition there is a choice between preserving equal pixel size or aspect ratio because the squashed non-corrected versions tend to look odd, but since proper scaling requires ununiform pixel sizes it is an option.
- changed how status bar sizes are being handled.
This has to recalculate all scaling and positioning factors, which can cause problems if the drawer leaves with some temporary values that do not reflect the status bar as a whole.
Changed it so that the status bar stores the base values and restores them after drawing is complete.
All our continuous integration targets have no problems with C99 isnan() macro but on Ubuntu 16.04 compilation fails
It appeared that some implementation of C++ Standard Library may undefine bunch of C macros to avoid conflicts with own declarations
- decided to ditch the widget system I had started to lay out. As it turns out that would make things far more complicated and slower than they need to be.
src/gl/scene/gl_clipper.h:150:23: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
src/gl/dynlights/gl_aabbtree.cpp:137:24: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:137:34: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:137:44: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:30: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:54: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:142:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:143:3: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:144:3: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:167:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_shadowmap.cpp:163:31: warning: '&&' within '||' [-Wlogical-op-parentheses]
src/p_saveg.cpp:367:16: warning: comparison of integers of different signs: 'unsigned int' and 'int' [-Wsign-compare]
src/p_saveg.cpp:402:60: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
src/p_setup.cpp:1553:39: warning: format specifies type 'ptrdiff_t' (aka 'long') but the argument has type 'int' [-Wformat]
src/scripting/zscript/zcc_compile.cpp:293:74: warning: field 'AST' will be initialized after field 'mVersion' [-Wreorder]
src/swrenderer/drawers/r_thread.cpp:113:21: warning: comparison of integers of different signs: 'int' and 'size_t' (aka 'unsigned long') [-Wsign-compare]
- consolidated the code to calculate a sprite's display angle for all 3 renderers.
As it turned out, they all differed in their feature support because they had always been updated independently by different people.
With no 3D floors this appears to be ok, but there are so many places where colormaps are being set in the software renderer that I cannot guarantee that I got all of them correct. This will need some testing.
- moved testcolor and test fades into SWRenderer files.
These CCMDs work by hacking the default colormap and were never implemented for hardware rendering because they require many checks throughout the code.
This has increasingly become an obstacle with the hardware renderer, so now the values are being stored as plain data in the sector, with the software renderer getting the actual color tables when needed. While this is a bit slower than storing the pregenerated colormap, in realistic situations the added time is mostly negligible in the microseconds range.
Removing this made me realize that calling the renderers' FakeFlat functions from the automap is inherently unsafe with the recent refactorings because there is absolutely no guarantee that the data may actually still be defined when the automap is being drawn.
So the best approach here is to give the automap its own FakeFlat function that runs independently of render data and assumptions of data preservation. This one can also be a lot simpler because it only needs the floor, not the ceiling info.
Since the true color software renderer also handles them there is no point keeping them on the GL side.
This also optimized how they are stored, because we no longer need to be aware of a base engine which doesn't have them.