Since it is updated every frame, it needs to be as fast as possible for
the cpu code. This seems to make a difference of about 10us (~130 ->
~120) when testing in marcher. Not a huge change, but the timing
calculation was wrapped around the entire base world pass, so there was
a fair bit of overhead from bsp traversal etc.
Really, this won't make all that much difference because alias models
with more than one skin are quite rare, and those with animated skin
groups are even rarer. However, for those models that do have more than
one skin, it will allow for reduced allocation overheads, and when
supported (glsl, vulkan, maybe gl), loading all the skins into an array
texture (since all skins are the same size, though external skins may
vary), but that's not implemented yet, this just wraps the old one skin
at a time code.
While looking at the deferred attachment images with using a template in
mind, I noticed that the opaque attachment was using 8-bit color. The
problem is, it's meant to be HDRI with the compose pass crunching it
down to LDRI. Switching to 16-bit float does seem to have made a subtle
difference (hey, it's still quake data, not much HDRI in there).
That certainly makes it nicer to work with large sets, and shows one way
to be careful with allocated resources: don't allocate them in the
inherited data and use a template that needs a few things filled in to
be valid. Also, it seems that overriding values in sub-structures "just
works" :)
It simply parses the referenced plist dictionary (via @inherit =
plist.path;) into the current data block, then allows the data to be
overwritten by the current plist dictionary. This may be a bit iffy for
any allocated resources, so some care must be taken, but it seems to
work nicely.
This allows a single render pass description to be used for both
on-screen and off-screen targets. While Vulkan does allow a VkRenderPass
to be used with any compatible frame buffer, and vkparse caches a
VkRenderPass created from the same description, this allows the same
description to be used for a compatible off-screen target without any
dependence on the swapchain. However, there is a problem in the caching
when it comes to targeting outputs with different formats.
This makes much more sense as they are intimately tied to the frame
buffer on which a render pass is working. Now, just the window width
and height are stored in vulkan_ctx_t. As a side benefit,
QFV_CreateSwapchain no long references viddef (now just palette and
conview in vulkan_draw.c to go).
While I have trouble imagining it making that much performance
difference going from 4 verts to 3 for a whopping 2 polygons, or even
from 2 triangles to 1 for each poly, using only indices for the vertices
does remove a lot of code, and better yet, some memory and buffer
allocations... always a good thing.
That said, I guess freeing up a GPU thread for something else could make
a difference.
I think I had gotten lucky with captures not being corrupt due to them
being much bigger than all but the L3 cache (and then they're over 1/2
the size), so the memory was being automatically invalidated by other
activity. Don't want to trust such luck, though.
It makes a significant difference to level load times (approximately
halves them for demo1 and demo2). Nicely, it turns out I had implemented
the rest of the staging buffer code (in particular, flushing) correctly
in that it seems there's no corruption any of the data.
This means that a tex_t object is passed in instead of just raw bytes
and width and height, but it means the texture can specify whether it's
flipped or uses BGR instead of RGB. This fixes the upside down
screenshots for vulkan.
This fixes (*ahem*) the vulkan renderer segfaulting when attempting to
take a screenshot. However, the image is upside down. Also, remote
snapshots and demo capture are broken for the moment.
QFS_NextFilename was renamed to QFS_NextFile to reflect the fact it now
returns a QFile pointer for the newly created file (as well as the
name). This necessitated updating WritePNG to take a file pointer
instead of a file name, with the advantage that WritePNGqfs is no longer
necessary and callers have much more control over the creation of the
file.
This makes QFS_NextFile much more secure against file system race
conditions and attacks (at least in theory). If nothing else, it will
make it more robust in a multi-threaded environment.
It's not there yet as it promptly closes the file and returns only the
filename (and then only the portion within the user's directory tree).
However, this worked nicely as a test for Sys_UniqueFile.
It seems clang defaults to unsigned for enums. Interestingly, gcc was ok
with the checks being either way. I guess gcc treats enums that *can* be
unsigned as DWIM.
Still work with gcc, of course, and I still need to fix them properly,
but now they're actually slightly easier to find as they all have vec_t
and FIXME on the same line.
Viewport and FOV updates are now separate so updating one doesn't cause
recalculations of the other. Also, perspective setup is now done
directly from the tangents of the half angles for fov_x and fov_y making
the renderers independent of fov/aspect mode. I imagine things are a bit
of a mess with view size changes, and especially screen size changes
(not supported yet anyway), and vulkan winds up updating its projection
matrices every frame, but everything that's expected to work does
(vulkan errors out for fisheye or warp due to frame buffer creation not
being supported yet).
If the entity didn't have a known model type, R_StoreEfrags would get
stuck in an infinite loop (fortunately, never actually happened. The
result of making it not call Sys_Error for unknown models)).
I meant to do this a while ago but forgot about it. Things are a bit of
a mess in that the renderer knows too much about entities, but
eventually the renderer will know about only things to render (meshes,
particles, etc).
The quake-specific enums are now in the client header, and the particle
system now has a gravity field rather than getting it from
vid_render_data (which I hope to eventually get rid of entirely).
r_refdef is really meant for holding the various screen "constants" for
the software renderer rather than the more generic scene stuff. All the
fields referenced by the low level rendering code (especially assembly)
have been moved to the beginning of the struct (and nicely fit within 64
bytes). The other fields should be moved elsewhere, but not this commit.
On top of that, R_ViewChanged is much easier to read, and there are
fewer static globals.
Now GL perspective matrix setup matches that of GLSL and Vulkan, and
GL's z_up matrix matches GLSL's (as it should, since they're really
going through the same API). GL also needs the depth adjustmet matrix
now. Other than having to google the docs for glFrustum, there's nothing
wrong with the function itself, but it's nice to have direct control
over the matrices.
In the process, I discovered how horribly confused I've been at times
with respect to the handedness of GL and Quake: GL is right-handed
(y-up, z-out, x-right), as is Quake itself (but z-up, y-left, x-in), but
as the perspective matrix used in the three renderers expects z-in,
having x-right and y-up makes the matrix effectively left-handed (not
for Vulkan though, because there it's y-down, x-right, z-up, so
right-handed again).
Of course, it's not as correct as glsl or sw due to using polygons and
uvs rather than a fragment shader (not that such is out of the question
since GL 3.0 is requested, but I don't feel like getting shaders going
just for a couple of post-processing effects in an obsolete renderer).
While it's not where I want it to be, it at least now no longer messes
with frame buffer binding or the view ports. This involved switching
around buffers in D_WarpScreen so that the main buffer could be bound
before post-processing.
The cvar setup for particles is a bit wonky in that the arrays get
initialized using the default max particle count but never updated.
Though things could be improved some more, this solution works (and has
been more or less copied to gl, but I couldn't reproduce the crash
there, or even the valgrind error).
The code dealing with state is a bit of a mess, but everything is
working nicely. Get around 400fps when all 6 faces need to be rendered
(no surprise: it should be about 1/6 of that for normal rendering). The
messy state handling code did not come as a surprise as I suspected
there were various mistakes in my scene rendering "recipe", and fisheye
highlighted them nicely (I'm sure getting this stuff working in Vulkan
will highlight even more issues).
Finally, after a decade :P Looks pretty good, too, and is (almost)
properly scaled to the resolution (almost because the effect is a little
squashed, but I think the sw renderer does the same).
The GLSL compiler requires any #version lines to be the first (real)
line of the program, even #line causes an error, so if the first line of
the chunk starts with #version, insert the #line directive as the second
line.