I guess it's not quite bindless as the texture index is a push constant,
but it seems to work well (and I may have fixed some full-bright issues
by accident, though I suspect that's just my imagination, but they do
look good).
This should fix the horrid frame rate dependent behavior of the view
model.
They are also in their own descriptor set so they can be easily shared
between pipelines. This has been verified to work for Draw.
BSP textures are now two-layered with the albedo and emission in the two
layers rather than two separate images. While this does increase memory
usage for the textures themselves (most do not have fullbright pixels),
it cuts down on image and image view handles (and shader resources).
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.
When allocating memory for multiple objects that have alignment
requirements, it gets tedious keeping track of the offset and the
alignment. This is a simple function for walking the offset respecting
size and alignment requirements, and doubles as a size calculator.
The stack is arbitrary strings that the validation layer debug callback
prints in reverse order after each message. This makes it easy to work
out what nodes in a pipeline/render pass plist are causing validation
errors. Still have to narrow down the actual line, but the messages seem
to help with that.
Putting qfvPushDebug/qfvPopDebug around other calls to vulkan should
help out a lot, tool.
As a bonus, the stack is printed before debug_breakpoint is called, so
it's immediately visible in gdb.
Modern maps can have many more leafs (eg, ad_tears has 98983 leafs).
Using set_t makes dynamic leaf counts easy to support and the code much
easier to read (though set_is_member and the iterators are a little
slower). The main thing to watch out for is the novis set and the set
returned by Mod_LeafPVS never shrink, and may have excess elements (ie,
indicate that nonexistent leafs are visible).
Quake just looked wrong without the view model. I can't say I like the
way the depth range is hacked, but it was necessary because the view
model needs to be processed along with the rest of the alias models
(didn't feel like adding more command buffers, which I imagine would be
expensive with the pipeline switching).
Since vulkan supports 32-bit indexes, there's no need for the
shenanigans the EGL-based glsl renderer had to go through to render bsp
models (maps often had quite a bit more than 65536 vertices), though the
reduced GPU memory requirements of 16-bit indices does have its
advantages.
Any sun (a directional light) is in the outside node, which due to not
having its own PVS data is visible to all nodes, but that's a tad
excessive. However, any leaf node with sky surfaces will potentially see
any suns, and leaf nodes with no sky surfaces will see the sun only if
they can see a leaf that does have sky surfaces. This can be quite
expensive to calculate (already known to be moderately expensive for
just the camera leaf node (singular!) when checking for in-map lights)
Getting close to understanding (again) how it all works. I only just
barely understood when I got vulkan's renderer running, but I really
need to understand for when I modify things for shadows. The main thing
hurdle was tinst, but that was dealt with in the previous commit, and
now it's just sorting out the mess of elechains and elementss.
Standard quake has just linear, but the modding community added inverse,
inverse-square (raw and offset (1/(r^2+1)), infinite (sun), and
ambient (minlight). Other than the lack of shadows, marcher now looks
really good.
Mostly, this gets the stage flags in with the barrier, but also adds a
couple more barrier templates. It should make for slightly less verbose
code, and one less opportunity for error (mismatched barrier/stages).
This gets the shaders needed for creating shadow maps, and the changes
to the lighting pipeline for binding the shadow maps, but no generation
or reading is done yet. It feels like parts of various systems are
getting a little big for their britches and I need to do an audit of
various things.
vid.aspect is removed (for now) as it was not really the right idea (I
really didn't know what I was doing at the time). Nicely, this *almost*
fixes the fov bug on fresh installs: the view is now properly
upside-down rather than just flipped vertically (ie, it's now rotated
180 degrees).
Loading is broken for multi-file image sets due to the way images are
loaded (this needs some thought for making it effecient), but the
Blender environment map loading works.
They're unlit (fullbright, but that's nothing new for quake), but
working nicely. As a bonus, sort out the sky pass (forced to due to the
way command buffers are used).
There were actually several problems: translucency wasn't using or
depending on the depth buffer, and the depth buffer wasn't marked as
read-only in the g-buffer pass. Getting that correct seems to have given
bigass1 a 0.5% boost (hard to say, could be the usual noise).
That was... easier than expected. A little more tedious that I would
have liked, but my scripting system isn't perfect (I suspect it's best
suited as the output of a code generator), and the C side could do with
a little more automation.
Other than dealing with shader data alignment issues, that went well :).
Nicely, the implementation gets the explicit scaling out of the shader,
and allows for a directional flag.
Still "some" more to go: a pile to do with transforms and temporary
entities, and a nasty one with host_cbuf. There's also all the static
block-alloc lists :/
Light styles and shadows aren't implemented yet.
The map's entities are used to create the lights, and the PVS used to
determine which lights might be visible (ie, the surfaces they light).
That could do with some more improvements (eg, checking if a leaf is
outside a spotlight's cone), but the concept seems to work.
It's not used yet as work needs to be done to better support generic
entities, but this is the next step to real-time lighting (though, to be
honest, I expect it will be too slow to be usable).
Static lights are yet to come (so the screen is black most of the time),
but dynamic lights work very nicely (and look very good) despite the
falloff being incorrect.
While I could reconstruct the position from the screen coords and depth,
this is easier and good enough for now. Reconstruction is an
optimization thing.
Lighting doesn't actually do lights yet, but it's producing pixels.
Translucent seems to be working (2d draw uses it), and compose seems to
be working.
After getting lights even vaguely working for alias models, I realized
that it just wasn't going to be feasible to do nice lighting with
forward rendering. This gets the bulk of the work done for deferred
rendering, but still need to sort out the shaders before any real
testing can be done.
It's not entirely there yet, but the basics are working. Work is still
needed for avoiding duplication of objects (different threads will have
different contexts and thus different tables, so necessary per-thread
duplication should not become a problem) and general access to arbitrary
fields (mostly just parsing the strings)
It's not quite as expected, but that may be due to one of msaa, the 0-15
range in the palette not being all the way to white, the color gradients
being not quite linear (haven't checked yet) or some combination of the
above. However, it's that what should be yellow is more green. At least
the zombies are no longer white and the ogres don't look like they're
wearing skeleton suits.
Doesn't seem to make much difference performance-wise, but speed does
seem to be fill-rate limited due to the 8x msaa. Still, it does mean
fewer bindings to worry about.