When working, this will handle the output to the swap-chain images and
any final post-processing effects (gamma correction, screen scaling,
etc). However, currently the screen is just black because the image
for getting the main render pass output isn't hooked up yet.
Now each (high level) render pass can have its own frame buffer. The
current goal is to get the final output render pass to just transfer the
composed output to the swap chain image, potentially with scaling (my
laptop might be able to cope).
While the HUD and status bar don't cut out a lot of screen (normally),
they might start to make a difference when I get transparency working
properly. The main thing is this is a step towards pulling the 2d
rendering into another render pass so the main deferred pass is
world-only.
Using swizzles in an image view allows the same shader to be used with
different image "types" (eg, color vs coverage).
Of course, this needed to abandon QFV_CreateImageView, but that is
likely for the best.
It turns out that nearest filtering doesn't need any offsets to avoid
texel leaks so long as the screen isn't also offset. With this, the 2d
rendering looks good at any scale (minus the inherent blockiness).
It seemed like a good idea at the time, but it exacerbates pixel leakage
in atlas textures that have no border pixels (even in nearest sampling
modes).
The rest of the system won't add one automatically (since entity
creation no longer does), but the alias and iqm rendering code expect
there to be one. Fixes a segfault when starting a scene (demo etc).
There's no API yet as I need to look into the handling of qpic_t before
I can get any of this into the other renderers (or even vulkan, for that
matter).
However, the current design for slice rendering is based on glyphs (ie,
using instances and vertex pulling), with 3 strips of 3 quads, 16 verts,
and 26 indices (2 reset). Hacky testing seems to work, but real tests
need the API.
I don't know why it didn't happen during the demo loop, but going from
the start map to e1m1 caused a segfault due to the efrags for a lava
ball getting double freed (however, I do think it might be because the
ball passed through at least two leafs, while entities in the demos did
not). The double free was because SCR_NewScene (indirectly) freed all
the efrags without removing them from entities, and then the client code
deleting the entities caused the visibility components to get deleted
and thus the efrags freed a second time. Using ECS_RemoveEntities on the
visibility component ensures the entities don't have a visibility
component to remove when they are later deleted.
It's currently used only by the vulkan renderer, as it's the only
renderer that can make good use of it for alias models, but now vulkan
show shirt/pants colors (finally).
This cuts down on the memory requirements for skins by 25%, and
simplifies the shader a bit more, too. While at it, I made alias skins
nominally compatible with bsp textures: layer 0 is color, 1 is emissive,
and 2 is the color map (emissive was on 3).
As the RGB curves for many of the color rows are not linearly related,
my idea of scaling the brightest color in the row just didn't work.
Using a masked palette lookup works much better as it allows any curves.
Also, because the palette is uploaded as a grid and the coordinates are
calculated on the CPU, the system is extendable beyond 8-bit palettes.
This isn't quite complete as the top and bottom colors are still in
separate layers but their indices and masks can fit in just one, but
this requires reworking the texture setup (for another commit).
For whatever reason, I had added an extra 4 bytes to the fragment
shader's push-constants. It took me a while to figure out why renderdoc
wouldn't stop complaining about me not writing enough data.
It turns out my approach to alias skin coloring just doesn't work for
the quake data due to the color curves not having a linear relationship,
especially the bottom colors.
It works on only one layer and one mip, and assumes the provided texture
data is compatible with the image, but does support sub-image updates
(x, y location as parameters, width and height in the texture data).
The bright end of the color map is actually twice the palette value, but
I didn't understand this when I came up with the shirt/pants color
scheme for vulkan. However, the skin texture can store only 0..1, so the
mapping to 0..2 needs to be done in the shader. It looks like it works
at least better: the gold key at the end of demo1 doesn't look as bleh,
though I do get some weird colors still on ogres etc.
Currently only for gl/glsl/vulkan. However, rather than futzing with
con_width and con_height (and trying to guess good values), con_scale
(currently an integer) gives consistent pixel scaling regardless of
window size.
Well, sort of: it's still really in the renderer, but now calling
R_AddEfrags automatically updates the visibility structure as necessary,
and deleting an entity cleans up the efrags automatically. I wanted this
over twenty years ago.
I had forgotten that the cl structs in nq and qw were different layouts,
which resulted in qw's sbar/hud being quite broken. Rather than messing
with the structs, I decided it would be far better in the long run to
clean up sbar's access to the cl struct and the few other nq/qw specific
globals it used. There are still plenty of bugs to fix, but now almost
everything is in the one place.
I'm not sure when things broke on my laptop (I thought I got warp and
fisheye working on my laptop), but it turns out things weren't quite
right, thus warp (and presumably fisheye) weren't working properly due
to GLSL errors that I only just noticed. This fixes water warp (and
probably fisheye).
Much of the nq/qw HUD system is quite broken, but the basic status bar
seems to be working nicely. As is the console (both client and server).
Possibly the biggest benefit is separating the rendering of HUD elements
from the updating of them, and much less traversing of invisible views
whose only purpose is to control the positioning of the visible views.
The view flow tests are currently disabled until I adapt the flow code
to ECS.
There seems to be a problem with view resizing in that some gravities
don't follow resizing correctly.
The resource functions assume the requested layers is correct (really,
the lighting code assumes that the resource functions assume such), but
QFV_CreateImage multiplies the layer count by 6 for cube maps (really,
the issue is in QFV_CreateImage, but I want to move away from it
anyway).
The check for the entity being the view model was checking only the
view model id, which is not sufficient when the view model is invalid by
never being set to other than 0s. A better system for dealing with the
view model is needed.