The pic is scaled to fill the specified rect (then clipped to the
screen (effectively)). Done just for the console background for now, but
it will be used for slice-pics as well.
Not implemented for vulkan yet as I'm still thinking about the
descriptor management needed for the instanced rendering.
Making the conback rendering conditional gave an approximately 3% speed
boost to glsl with the GL stub (~12200fps to ~12550fps), for either
conback render method.
While Draw_Glyph does draw only one glyph at a time, it doesn't shape
the text every time, so is a major win for performance (especially
coupled with pre-shaped text).
Font and text handling is very much part of user interface and at least
partially independent of rendering, but does fit it better with GUI than
genera UI (ie, both graphics and text mode), thus libQFgui as well as
libQFui are built in the ui directory.
The existing font related builtins have been moved into the ruamoko
client library.
Thanks to the 3d frame buffer output being separate from the swap chain,
it's possible to have a different frame buffer size from the window
size, allowing for a smaller buffer and thus my laptop can cope (mostly)
with the vulkan renderer.
I had debated putting the blending in the compose subpass or a separate
pass but went with the separate pass originally, but it turns out that
removing the separate pass gains 1-3% (5-15/545 fps in a timedemo of
demo1).
It's a bit flaky for particles, especially at higher frame rates, but
that's due to supporting only 64 overlapping pixels. A reasonable
solution is probably switching to a priority heap for the "sort" and
upping the limit.
I don't yet know whether they actually work (not rendering yet), but the
system isn't locking up, and shutdown is clean, so at least resources
are handled correctly.
This splits up render pass creation so that the creation of the various
resources can be tailored to the needs of the actual render pass
sub-system. In addition, it gets window resizing mostly working (just
some problems with incorrect rendering).
This is the minimum maximum count for sampled images, and with layered
shadow maps (with a minimum of 2048 layers supported), that's really way
more than enough.
Things are a bit of a mess with interdependence between sub-module
initialization and render pass initialization, and window resizing is
broken, but the main render pass rendering to an image that is then
post-processed (currently just blitted) is working. This will make it
possible to implement fisheye and water warp (and other effects, of
course).
When working, this will handle the output to the swap-chain images and
any final post-processing effects (gamma correction, screen scaling,
etc). However, currently the screen is just black because the image
for getting the main render pass output isn't hooked up yet.
Now each (high level) render pass can have its own frame buffer. The
current goal is to get the final output render pass to just transfer the
composed output to the swap chain image, potentially with scaling (my
laptop might be able to cope).
While the HUD and status bar don't cut out a lot of screen (normally),
they might start to make a difference when I get transparency working
properly. The main thing is this is a step towards pulling the 2d
rendering into another render pass so the main deferred pass is
world-only.
Using swizzles in an image view allows the same shader to be used with
different image "types" (eg, color vs coverage).
Of course, this needed to abandon QFV_CreateImageView, but that is
likely for the best.
As the RGB curves for many of the color rows are not linearly related,
my idea of scaling the brightest color in the row just didn't work.
Using a masked palette lookup works much better as it allows any curves.
Also, because the palette is uploaded as a grid and the coordinates are
calculated on the CPU, the system is extendable beyond 8-bit palettes.
This isn't quite complete as the top and bottom colors are still in
separate layers but their indices and masks can fit in just one, but
this requires reworking the texture setup (for another commit).
It turns out my approach to alias skin coloring just doesn't work for
the quake data due to the color curves not having a linear relationship,
especially the bottom colors.
It works on only one layer and one mip, and assumes the provided texture
data is compatible with the image, but does support sub-image updates
(x, y location as parameters, width and height in the texture data).
Another step towards moving all resource creation into the one place.
The motivation for doing the change was getting my test scene to work
with only ambient lights or no lights at all.
This puts the hierarchy (transform) reference, animation, visibility,
renderer, active, and old_origin data in separate components. There are
a few bugs (crashes on grenade explosions in gl/glsl/vulkan, immediately
in sw, reasons known, missing brush models in vulkan).
While quake doesn't really need an ECS, the direction I want to take QF
does, and it does seem to have improved memory bandwidth a little
(uncertain). However, there's a lot more work to go (especially fixing
the above bugs), but this seems to be a good start.
Its value on input is ignored. QFV_CreateResource writes the resource
object's offset relative to the beginning of the shared memory block.
Needed for the Draw overhaul.
I got tired of writing the same 13 or so lines of code over and over (it
actually put me off experimenting with Vulkan). Thus...
QFV_PacketCopyBuffer does the work of handling barriers and a (full
packet) copy from the staging buffer to a GPU buffer.
QFV_PacketCopyImage does a similar job, but for images. However, it
still needs a lot of work, but it does make getting a basic texture onto
the GPU much less of a hassle.
Both functions should make staging data much less error-prone.
This moves the qfv_resobj_t image initialization code from the IQM
loader into the resource management code. This will allow me to reuse
the code for setting up glyph data. As a bonus, it cleans up the IQM
code nicely.
I had missed that vkCmdCopyImage requires the source and destination
images to have exactly the same size, and I guess assumed that the
swapchain images would always be the size they said they were, but this
is not the case for tiled-optimal images. However,
vkCmdCopyImageToBuffer does the right thing regardless of the source
image size.
This fixes the skewed screenshots when the window size is not a multiple
of 8 (for me, might differ for others).
There's a problem with screenshot capture in that the image is sheared
after window resize, but the screen view looks good, and vulkan is happy
with the state changes.
I've found and mostly isolated the parts of the code that will be
affected by window resizing, minus pipelines but they use dynamic
viewport and scissor settings and thus shouldn't be affected so long as
the swapchain format doesn't change (how does that happen?)
This did involve changing some field names and a little bit of cleanup,
but I've got a better handle on what's going on (I think I was in one of
those coding trances where I quickly forget how things work).
This makes bsp traversal even more re-entrant (needed for shadows).
Everything needed for a "pass" is taken from bsp_pass_t (or indirectly
through bspctx_t (though that too might need some revising)).
There are some issues with the light renderers getting mangled, and only
the first light is even touched (just begin and end of render pass), but
this gets a lot of the framework into place.
Sounds odd, but it's part of the problem with calling two different
things with essentially the same name. The "high level" render pass in
question may be a compute pass, or a complex series of (Vulkan) render
passes and so won't create a Vulkan render pass for the "high level"
render pass (I do need to come up with a better name for it).
It now lives in vulkan_renderpass.c and takes most of its parameters
from plist configs (just the name (which is used to find the config),
output spec, and draw function from C). Even the debug colors and names
are taken from the config.
QFV_CreateRenderPass is no longer used, and QFV_CreateFramebuffer hasn't
been used for a long time. The C file is still there for now but is
basically empty.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
Surfaces marked with SURF_DRAWALPHA but not SURF_DRAWTURB are put in a
separate queue for the water shader and run with a turb scale of 0.
Also, entities with colormod alpha < 1 are marked to go in the same
queue as SURF_DRAWALPHA surfaces (ie, no SURF_DRAWTURB unless the
model's texture indicated such).
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.