This puts the hierarchy (transform) reference, animation, visibility,
renderer, active, and old_origin data in separate components. There are
a few bugs (crashes on grenade explosions in gl/glsl/vulkan, immediately
in sw, reasons known, missing brush models in vulkan).
While quake doesn't really need an ECS, the direction I want to take QF
does, and it does seem to have improved memory bandwidth a little
(uncertain). However, there's a lot more work to go (especially fixing
the above bugs), but this seems to be a good start.
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.
It's implemented only in the Vulkan renderer, partly because there's a
lot of experimenting going on with it, but the glyphs do get transferred
to the GPU (checked in render doc). No rendering is done yet: still
thinking about whether to do a quick-and-dirty test, or to add HarfBuzz
immediately, and the design surrounding that.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
This replaces *_NewMap with *_NewScene and adds SCR_NewScene to handle
loading a new map (for quake) in the renderer, and will eventually be
how any new scene is loaded.
The code dealing with state is a bit of a mess, but everything is
working nicely. Get around 400fps when all 6 faces need to be rendered
(no surprise: it should be about 1/6 of that for normal rendering). The
messy state handling code did not come as a surprise as I suspected
there were various mistakes in my scene rendering "recipe", and fisheye
highlighted them nicely (I'm sure getting this stuff working in Vulkan
will highlight even more issues).
Finally, after a decade :P Looks pretty good, too, and is (almost)
properly scaled to the resolution (almost because the effect is a little
squashed, but I think the sw renderer does the same).
r_screen isn't really the right place, but it gets the scene rendering
out of the low-level renderers and will make it easier to sort out
later, and hopefully easier to figure out a good design for vulkan.
Finally. I never liked it (felt bad adding it in the first place), and
it has caused confusion with function and global variable names, but it
did let me get the render plugins working.
Getting close to understanding (again) how it all works. I only just
barely understood when I got vulkan's renderer running, but I really
need to understand for when I modify things for shadows. The main thing
hurdle was tinst, but that was dealt with in the previous commit, and
now it's just sorting out the mess of elechains and elementss.
This is a big step towards a cleaner api. The struct reference in
model_t really should be a pointer, but bsp submodel(?) loading messed
that up, though that's just a matter of taking more care in the loading
code. It seems sensible to make that a separate step.
It's never actually used (the texture can be fetched using
GLSL_ScrapTexture) and gets in the way of sharing the scrap system with
the vulkan renderer.
Again, based on The OpenGL Shader Wrangler. The wrangling part is not used
yet, but the shader compiler has been modified to take the built up shader.
Just to keep things compiling, a wrapper has been temporarily created.
This severely reduces the calles to BindTexture, and more importantly,
glUseProgram, EnableVertexAttribArray etc. The biggest changes are:
o icons and text are all in the one giant texture
o icons and text are mixed in the one queue
This gave ~9% speedup for bigass1 (159->174fps).
Where possible, symbols have been made static, prefixed with glsl_/GLSL_ or
moved into the code shared by all renderers. This will make doing plugins
easier but done now for link testing. The moving was done via the gl
commit.
Where possible, symbols have been made static, prefixed with gl_/GL_ or
moved into the code shared by all renderers. This will make doing plugins
easier but done now for link testing.
Unfortunately, the maximum point size on Intel hardwar seems to be 1, so I
can't tell if the colors are right.
This is largely just a hacked version of GL's particle code.
The entire vertex set from every model is put into one list (not yet
uploaded). chains of elements arrays are build for non-instanced models
(instanced models will have their chains built each frame).
Still nothing being rendered: still in the process of building the display
lists, but I'm making good progress. Get this into git before something
goes wrong :)