It may use the same calculations as the hardware renderer but must use the 2D drawer for display.
It should be investigated if the hardware renderer can do this as well.
This does not work with a setup where the same backend is driving both renderers.
Most of this is now routed through 'screen', and the decision between renderers has to be made inside the actual render functions.
The software renderer is still driven by a thin opaque interface to keep it mostly an isolated module.
This will cause incorrectly generated textures and the reason for this no longer exists because CreateTexBuffer is doing this as a postprocessing step now.
* the MAPINFO options now get handled in g_mapinfo.cpp and g_level.cpp, just like the rest of them as members of level_info_t and FLevelLocals.
* RecalcVertexHeights has been made a member of vertex_t and been moved to p_sectors.cpp.
* the dumpgeometry CCMD has been moved to p_setup.cpp
This theoretically means that the software renderer could access this data as well - if it just had been written with a more flexible texture interface.
However, as things stand, this may require quite a bit of work to achieve.
The old organization made sense when ZDoom still was a thing but now it'd be better if all pure data with no dependence on renderer implementation details was moved out.
A separation between GL2 and GL3+4 renderers looks to be inevitable and the more data is out of the renderer when that happens, the better.
This was originally invented to fix the sprite offsets for the hardware renderer.
Changed it so that it doesn't override the original offsets but acts as a second set.
A new CVAR has been added to allow controlling the behavior per renderer.
This also replaces DTA_ColormapStyle with proper implementations of its components. As implemented it was a very awkward mixture of various effects that already existed in a separate form. As a result of its implementation it required additional but completely redundant shader support which could be removed now. As a side effect of this change a new DTA_Desaturate option was added.
No more locking insanity! :)
There are no locking counters or other saveguards here that would complicate the implementation because there's precisely two places where this buffer must be locked - the RenderView functions of the regular and poly SW renderer which cannot be called recursively.
In its current form this is quite useless. What's really needed is to require a lock on the RenderBuffer for the 3D scene, but since this is not needed for the 2D stuff anymore it can be done far simpler.
This was a bad idea from the start and really only made sense with DirectDraw.
These days a FrameBuffer represents an abstract hardware canvas that shares nothing with a software canvas so having these classes linked together makes things needlessly complicated.
The software render buffer is now a canvas object owned by the FrameBuffer.
Note that this commit deactivates a few things in the software renderer, but from the looks of it none of those will be needed anymore if we set OpenGL 2 as minimum target.
This is a necessary first step for simplifying the texture handling in order to refactor it.
# Conflicts:
# src/gl/system/gl_swframebuffer.cpp
# src/textures/textures.h
# src/win32/fb_d3d9.cpp
This was done mainly to reduce the amount of occurences of the word FTexture but it immediately helped detect two small and mostly harmless bugs that were found due to the stricter type checks.
These cannot be done with the regular textures so there needs to be an option to create more than one native texture per FTexture. For completeness' sake there is also the option now to create a paletted version of a texture if the regular one is true color. This fixes a long standing problem that translations were not applied to non-paletted textures.
The old logic used a translation table that does not work with color images, it was designed to handle 8 bit grayscale images.
So now, it creates a true color buffer and then turns it into a texture with R,G,B = 255 and the alpha channel set to the grayscale value.
This was also the reason why crosshairs made from 32 bit PNGs did not show correctly.
Now it is no longer necessary to provide specially set up textures for rendering shaded decals, they can use any PNG texture now that contains a proper red channel.
Handling of the alPh chunk has been removed as a result as it in no longer needed.
Until now each subclass of FTexture had to implement the entire span generation itself, presumably so that a few classes can use simpler structures.
This does not work if a texture can have more than one pixel buffer as is needed for alpha textures.
Even though it means that some classes will allocate more data now, it's the only way to do it properly.
In addition this removes a significant amount of mostly redundant code from the texture classes.
- added alpha texture processing to all converted classes
As of now this is not active and not tested.
Note that as part of the conversion even those textures that were working as alphatextures will not look correct until the higher level code gets adjusted.