sincos is just a wrapper around the GNU libc sincos. sincosh is the
equivalent for sinh and cosh, but there doesn't seem to be any such
function, so it's just the two wrapped. They both return their results
in a vec2/vec2d as (sih[h], cos[h]).
VM side of the work needed for #58. Tests are still only 4-component,
but the geometric algebra tests seem to have 2-component covered at
least a little bit.
While it could be emulated using a 3d cross-product, it was a hack and
required the use of a swizzle (or alias) to extract the scalar value.
This will make 2d PGA a little nicer when I get to modifying qfcc for it
While the progs engine itself implements the instructions correctly, the
opcode specs (and thus qfcc) treated the results as 32-bit (which was,
really, a hidden fixme, it seems).
Using swizzle for some of the geometric product operations was a bit
clunky and has problems with alignment. While I will still need it in
the future, it turns out that the extend instruction almost did what I
needed. However, I'm unsure that reversing components within an extended
vector is the way to go.
By default. Conversion of quake strings needs to be requested (which is
done by nq and qw clients and servers, as well as qfprogs via an
option). I got tired of seeing mangled source code in the disassembly.
This gets only some very basics working:
* Algebra (multi-vector) types: eg @algebra(float(3,0,1)).
* Algebra scopes (using either the above or @algebra(TYPE_NAME) where
the above was used in a typedef.
* Basis blades (eg, e12) done via procedural symbols that evaluate to
suitable constants based on the basis group for the blade.
* Addition and subtraction of multi-vectors (only partially tested).
* Assignment of sub-algebra multi-vectors to full-algebra multi-vectors
(missing elements zeroed).
There's still much work to be done, but I thought it time to get
something into git.
I realized recently that I had made a huge mistake making Ruamoko's
based addressing use unsigned offsets as it makes stack-relative
addressing more awkward when it comes to runtime-determined stack frames
(eg, using alloca). This does put a bit of an extra limit on directly
addressable globals, but that's what the based addressing is meant to
help with anyway.
I'm not sure what's up, but arm gcc thinks the array isn't properly
initialized even though x86_64 gcc does. Maybe something with padding.
At least c23 makes it easy to 0-initialize VLAs.
I'm actually surprised anything worked, though I guess it was just the
one entry getting corrupted (and not 32, but I figured allocate slots
for all of the dynamic lights just in case). Or none, really, since
larger scenes (ie, those with multiple lights that fit in the same image
size) would result in not all the maps getting used and thus one spare
for dynamic lights.
This seems excessive, but gmsp3v2 map has 1399 lights. Worse, it has a
lot of different light sizes that go up by small increments (generally
around 10) resulting in 33 shadow map images (1 too many). Quantizing
the sizes to 32 drops this nicely to 20, and reduces memory consumption
slightly too (image buffer overhead, I guess).
While the gl renderer does (or did) have it's attempt at shadows, the
others don't even try, thus the onlyshadows-marked player model doesn't
work so well (looks rather goofy seeing the arms like that).
Having more than one copy of ShadowMatrices went against my plans, and I
had trouble finding the attachments set (light_attach.h wasn't such a
good idea).
This covers only the rendering of the shadow maps (actual use still
needs to be implemented). Working with orthographic projection matrices
is surprisingly difficult, partly because creating one includes the
translations needed to get the scene into the view (and depth range),
which means care needs to be taken with the view (camera) matrix in
order to avoid double-translating depending on just how the orthographic
matrix is set up (if it's set up to focus on the origin, then the camera
matrix will need translation, otherwise the camera matrix needs to avoid
translation).
I found it rather confusing that the matrices were all backwards, and
the existing comments about being "horizontal" didn't really help all
that much. After spending some time with maxima, I was able to verify
that the comments were indeed correct, just transposed (horizontal),
with the final composition reversed to reflect that transposition.
Updating directional light CSM matrices made me realize I needed to be
able to send the contents of a packet to multiple locations in a buffer
(I may need to extend it to multiple buffers). Seems to work, but I have
only the one directional light with which to test.
This improves the projection API in that near clip is a parameter rather
than being taken directly from the cvar, and a far clip (ie, finite far
plane) version is available (necessary for cascaded shadow maps as it's
rather hard to fit a box to an infinite frustum).
Also, the orthographic projection matrix is now reversed as per the
perspective matrix (and the code tidied up a little), and a version that
takes min and max vectors is available.
gcc didn't like a couple of the changes (rightly so: one was actually
incorrect), and the fix for qfcc I didn't think to suggest while working
with Emily.
The general CFLAGS etc fixes mostly required just getting the order of
operations right: check for attributes after setting the warnings flags,
though those needed some care for gcc as it began warning about main
wanting the const attribute.
Fixing the imui link errors required moving the ui functions and setup
to vulkan_lighting.c, which is really the only place they're used.
Fixing a load of issues related to autoconf and some small source-level issues to re-add clang support.
autoconf feature detection probably needs some addressing - partially as -Werror is applied late.
Lines are drawn for a light's leaf, the leafs visible to it, or those in
its efrags chain. Still no idea why lights are drawing when they
shouldn't. Deek suggest holes in the map, but I think if that was the
case, there'd be something visible. My suspicion is I'm doing something
wrong in with efrags.
This has resulted in some rather interesting information: it seems the
surfaces (and thus, presumably bounding boxes) for leafs have little to
do with the actual leaf node's volume.
I really don't know what I was thinking when I wrote that code. Maybe I
was trying for a half angle. Now the rendered "cone" matches up with a
hard-clipped cone light (soft edges stick out a bit).
I spent way too long tracking down the easy teleporter disappearing only
to realize it might be the watervised map. After moving it out of the
way and using id's maps, it works just fine.