This allows using the UI scale or its own value, like all other scaling values.
In addition there is a choice between preserving equal pixel size or aspect ratio because the squashed non-corrected versions tend to look odd, but since proper scaling requires ununiform pixel sizes it is an option.
- changed how status bar sizes are being handled.
This has to recalculate all scaling and positioning factors, which can cause problems if the drawer leaves with some temporary values that do not reflect the status bar as a whole.
Changed it so that the status bar stores the base values and restores them after drawing is complete.
Using I_MSTime is not precise enough, because some camera textures can be done quicker. It was pointless anyway trying to make this multithreading-safe, the entire caching idea here makes no sense if two clippers can simultaneously work on the same level data without changing the memory organization and rendering it ineffective.
src/gl/scene/gl_clipper.h:150:23: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
src/gl/dynlights/gl_aabbtree.cpp:137:24: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:137:34: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:137:44: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:30: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:54: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:142:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:143:3: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:144:3: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:167:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_shadowmap.cpp:163:31: warning: '&&' within '||' [-Wlogical-op-parentheses]
src/p_saveg.cpp:367:16: warning: comparison of integers of different signs: 'unsigned int' and 'int' [-Wsign-compare]
src/p_saveg.cpp:402:60: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
src/p_setup.cpp:1553:39: warning: format specifies type 'ptrdiff_t' (aka 'long') but the argument has type 'int' [-Wformat]
src/scripting/zscript/zcc_compile.cpp:293:74: warning: field 'AST' will be initialized after field 'mVersion' [-Wreorder]
src/swrenderer/drawers/r_thread.cpp:113:21: warning: comparison of integers of different signs: 'int' and 'size_t' (aka 'unsigned long') [-Wsign-compare]
It looks like the memory management at use here is not capable of maintaining multiple instances simultaneously and the camera textures create another scene drawer so the initialization of the main scene drawer has to be delayed until after the camera textures are done.
- replaced TStaticArray with regular TArrays.
They had incomplete implementations preventing proper cleanup of the level loading code. It makes more sense to add the missing methods to the regular TArray and use that.
This also makes some changes to how the game nodes are used to avoid creating a copy: If the head node's pointer is stored in a separate variable, no code needs to check which of the two arrays gets used.
- consolidated the code to calculate a sprite's display angle for all 3 renderers.
As it turned out, they all differed in their feature support because they had always been updated independently by different people.
- moved testcolor and test fades into SWRenderer files.
These CCMDs work by hacking the default colormap and were never implemented for hardware rendering because they require many checks throughout the code.
This has increasingly become an obstacle with the hardware renderer, so now the values are being stored as plain data in the sector, with the software renderer getting the actual color tables when needed. While this is a bit slower than storing the pregenerated colormap, in realistic situations the added time is mostly negligible in the microseconds range.
If we have to write compiler specific code for micro-optimizations I am out.
The Posix compatible version nullified most the advantage on MSVC by writing out the XMM register to memory and then reading back the float.
That's not worth the hassle for an optimization that brings a few microseconds at best.
Removing this made me realize that calling the renderers' FakeFlat functions from the automap is inherently unsafe with the recent refactorings because there is absolutely no guarantee that the data may actually still be defined when the automap is being drawn.
So the best approach here is to give the automap its own FakeFlat function that runs independently of render data and assumptions of data preservation. This one can also be a lot simpler because it only needs the floor, not the ceiling info.
- optimized the math to get a plane equation from a linedef. The original code used a generic algorithm that knew nothing about the fact that Doom walls are always perfectly vertical. With this knowledge the plane calculation can be reduced to a lot less code because retrieving the normal is trivial in this special case.
- use the SSE2 rsqrtss instruction to calculate a wall's length, because this is by far the most frequent use of square roots in the GL renderer. So far this is only active on x64, it may be activated on 32 bit later as well, but only after it has been decided if 32 bit builds should be x87 or SSE2.
# Conflicts:
# src/gl/dynlights/gl_dynlight.cpp
# Conflicts:
# src/g_shared/a_dynlightdata.cpp
Since the true color software renderer also handles them there is no point keeping them on the GL side.
This also optimized how they are stored, because we no longer need to be aware of a base engine which doesn't have them.
- removed the LastCamera logic in RenderView. This code predates the first GZDoom release and apparently was only added because back then R_SetupFrame was not fully compatible with the hardware renderer. Today it is not needed anymore.
(Is there anyway to tone down GCC's warning level? It outputs too many false positives for potentially uninitialized variables in which the genuine errors get drowned.)
Both files can now be included independently without causing problems.
This also required moving some inline functions into separate files and splitting off the GC definitions from dobject.h to ensure that r_defs does not need to pull in any part of the object hierarchy.
Most of those which still rely on ZDoom's own definition should be gone, unfortunately the code in files that include Windows headers is a gigantic mess with DWORDs being longs there intead of ints, so this needs to be done with care. DWORD should only remain where the Windows type is actually wanted.
This can only be used if the entirety of the game code is aware and dealing with this properly. However, that isn't the case so the amount of glitches this causes far exceeds the number of desired interpolations.
- extended the maximum settable light size in GLDEFS to 1024 throughout.
- fixed: A fullbright flat should not be subjected to a sector's material color.
This should for now conclude actor class scriptification. The remaining ten classes with the exception of MorphedMonster are all too essential or too closely tied to engine feature so they should remain native.
* completely scriptified DehackedPickup and FakeInventory.
* scriptified all remaining virtual functions of Inventory, so that its inheritance is now 100% script-side.
* scriptified CallTryPickup and most of the code called by that.
- fixed: Passing local variables by reference did not work in the VM.
- disabled the Build map loader after finding out that it has been completely broken and nonfunctional for a long time. Since this has no real value it will probably removed entirely in an upcoming commit.
- widened ttl variable in particle_t to short to allow longer living particles than 6 seconds.
- reordered fields in particle_t to reduce struct size a bit.
First, if it has already been determined the value should be left alone and second, for translated textures the generated buffer is inconclusive so in that case it cannot be used at all.
- for explicitly defined glows, use the one for the current animation frame, if an animated texture is active. For default glows it will still use the base texture's to avoid inconsistencies.
There's two restrictions, though:
* on one-sided-line portals fog boundaries will not be drawn.
* the filler sector behind the portal may not have a sky ceiling texture. This is because the drawing code contains several sky checks which get in the way here.
- check and use WGL_EXT_swap_control_tear extension. The above change makes the system always wait for a full vsync with a wglSwapInterval of 1, so it now uses the official extension that enables adaptive vsync. Hopefully this also works on the cards where the old setup did not.
This was done to clean up the license and to ensure that any commercial fork of the engine has to obey the far stricter requirements concerning source distribution. The old license was compatible with GPLv2 whereas combining GPLv2 and LGPLv3 force a license upgrade to GPLv3. The license of code that originates from ZDoomGL has not been changed.
As with the Stereo3D stuff, this cannot be done because recursive processing of portals will change it. Instead the local copy has to be used here, just like the EndDrawScene call already did.
- disable framebuffers for camera textures in legacy mode entirely. This depends on a GL_DEPTH24_STENCIL8 surface which most of these old chipsets do not support, and I really see no point to invest any work here. The worst that can happen is that oversized camera textures won't be processed, which, due to general performance issues, might even be a good thing.
Both of these were inherited from ZDoomGL and in terms of light design in maps it makes absolutely no sense to have them user configurable. They should have been removed 11 years ago.
- restricted gl_lights_additive to legacy code and removed menu entry for this.
For modern hardware this setting is completely pointless, it offers no advantage and degrades visual quality. Its only reason for existence was that drawing additive lights with textures is a lot faster, and that's all it's being used for now.
2D calls are accumulated and then executed all at once at the end of the frame, but this one needs to be interleaved with the 3D rendering. It now uses the quad drawer to fill the portal with blackness.
- added colormap shader to postprocessing.
This replaces the in-place application of fullscreen colormaps if renderbuffers are active. This way the fully composed scene gets inverted, not each element on its own which is highly problematic for additively blended things.