As the sw renderer's implementation was the closest to id's, it was used
as the model (thus a fair bit of cleanup is still needed). This fixes
some incorrect implementations in glsl and gl.
I'd forgotten (when doing the original brush texture loader) that
turbulent surfaces were unlit and thus always full-bright, then never
wrote the turb shader to take care of it. The best solution seems to be
to just mix the two colors in the shader as it will allow turb surfaces
to be lit in the future (probably with severely limited light counts due
to being a forward renderer).
This gets the alias pipeline in line with the bsp pipeline, and thus
everything is about as functional as it was before the rework (minus
dealing with large texture sets).
I guess it's not quite bindless as the texture index is a push constant,
but it seems to work well (and I may have fixed some full-bright issues
by accident, though I suspect that's just my imagination, but they do
look good).
This should fix the horrid frame rate dependent behavior of the view
model.
They are also in their own descriptor set so they can be easily shared
between pipelines. This has been verified to work for Draw.
BSP textures are now two-layered with the albedo and emission in the two
layers rather than two separate images. While this does increase memory
usage for the textures themselves (most do not have fullbright pixels),
it cuts down on image and image view handles (and shader resources).
Smashing everything in the process :P (need to work on the C side).
However, while bindless is supposedly good for performance, the biggest
gain this will bring is portability: the texture counts are
automatically limited to what the hardware can handle, and the reliance
on push descriptors is removed (though they were nice and did help get
things up and running).
I had forgotten that the parameters are in reverse order, and even if I
had remembered, I forgot to reset offset before the second loop.
Pre-decrementing offset takes care of both issues at once.
My VersaPro doesn't support more than 32 per-stage samplers (lavapipe).
This is a small part of getting Vulkan to run on lavapipe and even in
itself is rather incomplete.
Fixes the warning about parse_fixed_array not being used (oops, the
problem with partial commits), but more importantly, gives access to
things like maxDescriptorSetSamplers.
This will make property list expressions easier to work with. The
library is rather limited right now (trig, dot, min/max/bound) but even
just min adds a lot of functionality.
I want to support reading VkPhysicalDeviceLimits but it has some arrays.
While I don't need to parse them (VkPhysicalDeviceLimits should be
treated as read-only), I do need to be able to access them in property
list expressions, and vkgen generates the cexpr type descriptors too.
However, I will probably want to parse arrays some time in the future.
This ensures that unused parser blocks do not get emitted. In the
testing of the upcoming support for fixed arrays, the blend color
constants were being double emitted (both as custom and normal parser)
due to being an array. gcc did not like that (what with all those
warning flags).
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.
This is actually a better solution to the renderer directly accessing
client code than provided by 7e078c7f9c.
Essentially, V_RenderView should not have been calling R_RenderView, and
CL_UpdateScreen should have been calling V_RenderView directly. The
issue was that the renderers expected the world entity model to be valid
at all times. Now, R_RenderView checks the world entity model's validity
and immediately bails if it is not, and R_ClearState (which is called
whenever the client disconnects and thus no longer has a world to
render) clears the world entity model. Thus R_RenderView can (and is)
now called unconditionally from within the renderer, simplifying
renderer-specific variants.
While using binary data objects for specialization data works for bools
(as they can be 0 or -1), they don't work so well for numeric values due
to having to get the byte order correct and thus are not portable, and
difficult to get right.
Binary data is still supported, but the data can be written as a string
with an array(...) "constructor" expression taking any number of
parameters, with each parameter itself being an expression (though
values are limited at this stage).
Due to the plist format, quotes are required around the expression
("array(...)")
Sets never shrink, so assigning a dynamically created set to a
statically created set after the working size has reduced (going from
demo2 to demo3) causes the set code to attempt to resize the statically
created set, which leads to libc having a bad time.
Why nvidia's drivers accepted double-destroyed framebuffers is beyond
me, but this fixes the Intel drivers complaining about such (and the
subsequent segfault).
When I changed the matrices from an array of floats to an array of
vec4f_t, I forgot to update the flush offsets. Yay for having a
Vulkan-capable Intel device with its different alignment requirements.
When allocating memory for multiple objects that have alignment
requirements, it gets tedious keeping track of the offset and the
alignment. This is a simple function for walking the offset respecting
size and alignment requirements, and doubles as a size calculator.
While using barriers is a zillion times better than actually grabbing
the mouse and keyboard, they're still a pain when debugging as qf is not
able to respond to the barrier-hit events. All the other logic is still
there so even when "grabbing", the mouse will not be blocked if the
window doesn't have focus.
The stack is arbitrary strings that the validation layer debug callback
prints in reverse order after each message. This makes it easy to work
out what nodes in a pipeline/render pass plist are causing validation
errors. Still have to narrow down the actual line, but the messages seem
to help with that.
Putting qfvPushDebug/qfvPopDebug around other calls to vulkan should
help out a lot, tool.
As a bonus, the stack is printed before debug_breakpoint is called, so
it's immediately visible in gdb.
Rather than just 0/1, it now acts as flags to control what messages are
printed. In addition to the Vulkan enum names (long and short), none and
all are supported (as well as raw numbers, but they're not checked for
validity). This makes vulkan_use_validation a bit easier to use and less
verbose by default.
Now, if only it was easier to remember the name :P
It seems X11 does not like creating barriers entirely off the screen,
though the error seems to be a little unreliable (however, off the left
edge was definitely bad).
For now, only the first two axis (mouse X and Y) are supported (XInput
treats the scroll wheel events as axes too, so mice have up to 4!), but
most importantly, this prevents the scroll wheel from being seen as the
X axis. Oops.
With the old headers removed, X11_SetGamma became a stub and gcc
complained about it wanting the const attribute. On investigation, it
turned out the X_XF86VidModeSetGamma was a holdover from the initial
implementation of hardware gamma support.
UI key presses are still handled by regular X events, but in-game
"button" presses arrive via raw keyboard events. This gives transparent
handling of keyboard repeat (UI keys see repeat, game keys do not),
without messing with the server's settings (yay, that was most annoying
when it came to debugging), and the keyboard is never grabbed, so this
is a fairly user-friendly setup.
At first, I wasn't too keen on capturing them from the root window
(thinking about the user's security), but after a lot of investigation,
I found a post by Peter Hutterer
(http://who-t.blogspot.com/2011/09/whats-new-in-xi-21-raw-events.html)
commenting that root window events were added to XInput2 specifically
for games. Since application focus is tracked and unfocused key events
are dropped very early on, there's no way for code further down the
food-chain to know there even was an event, abusing the access would
require modifying the x11 input code, in which case all bets are off
anyway and any attempt at security anywhere in the code will fail,
meaning that nefarious progs code and the like shouldn't be a problem.
After a lot of thought, it really doesn't make sense to have an option
to block mouse input in x11 (not grabbing or similar does make sense, of
course). Not initializing mouse input made perfect sense in DOS and even
console Linux (SVGA) what with the low level access.