Line rendering now has its own pipeline (removing the texture issue).
Glyph rendering (for fonts) has been reworked to use instanced quad
rendering, with the geometry (position and texture coords) in a static
buffer (uniform texture buffer), and each instance has a glyph index,
color, and 2d base position.
Multiple fonts can be loaded, but aren't used yet: still just the one
(work needs to be done on the queues to support multiple
textures/fonts).
Quads haven't changed much, but buffer creation and destruction has been
cleaned up to use the resource functions.
As gbuf_base derives from the base pipeline, it inherits base's dynamic
setting, and thus doesn't need its own. I had a FIXME there as I wasn't
sure why I had a redundant setting, but I really can't see why I'd want
it different from any of the other main renderpass pipelines.
It now lives in vulkan_renderpass.c and takes most of its parameters
from plist configs (just the name (which is used to find the config),
output spec, and draw function from C). Even the debug colors and names
are taken from the config.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
Surfaces marked with SURF_DRAWALPHA but not SURF_DRAWTURB are put in a
separate queue for the water shader and run with a turb scale of 0.
Also, entities with colormod alpha < 1 are marked to go in the same
queue as SURF_DRAWALPHA surfaces (ie, no SURF_DRAWTURB unless the
model's texture indicated such).
It is currently an ugly hack for dealing with the separate quad queue,
and the pipeline handling code needs a lot of cleanup, but it works
quite well, though I do plan on moving to HarfBuzz for text shaping. One
nice development is I got updating of descriptor sets working (just need
to ensure the set is no longer in use by the command queue, which the
multiple frames in flight makes easy).
I have recently learned that pre-multiplied alpha is the correct way to
do compositing, which is pretty much what the 2d pass does (actually,
all passes, but...). This required ensuring the color factor passed to
the fragment shader is pre-multiplied (a little silly for cshifts as
they used to be pre-multiplied but were un-pre-multiplied early in QF's
history and I don't feel like fixing that right now as it affects all
renderers), and also pre-multiplying alpha when converting from 8-bit
palette to rgba as the palette entry for transparent has that funky pink
(which is used in full-brights).
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
This allows the use of an entity id to index into the entity data and
fetch the transform and colormod data in the vertex shader, thus making
instanced rendering possible. Non-world brush entities are still not
rendered, but the world entity is using both the entity data buffer and
entid buffer.
The map uses 41% of a 4k light map scrap, and 512 texture descriptors
wasn't enough for vulkan. Ouch. I do need to get cvars on these things,
but this will do for now (decades later...)
For now, at least (I have some ideas to possibly reduce the numbers and
also to avoid the need for actual limits). I've seen gmsp3v2 use over
500 lights at once (it has over 1300), and I spent too long figuring out
that weird light behavior was due to the limit being hit and lights
getting dropped (and even longer figuring out that more weird behavior
was due to the lack of shadows and the world being too bright in the
first place).
The bones aren't animated yet (and I realized I made the mistake of
thinking the bone buffer was per-model when it's really per-instance (I
think this mistake is in the rest of QF, too)), skin rendering is a
mess, need to default vertex attributes that aren't in the model...
Still, it's quite satisfying seeing Mr Fixit on screen again :)
I wound up moving the pipeline spec in with the rest of the pipelines as
the system isn't really ready for separating them.
That @inherit is pretty useful :) This makes it much easier to see how
different pipelines differ or how they are the similar. It also makes it
much clearer which sub-pass they're for.
While I have trouble imagining it making that much performance
difference going from 4 verts to 3 for a whopping 2 polygons, or even
from 2 triangles to 1 for each poly, using only indices for the vertices
does remove a lot of code, and better yet, some memory and buffer
allocations... always a good thing.
That said, I guess freeing up a GPU thread for something else could make
a difference.
This gets the pipelines loaded (and unloaded on shutdown). Probably the
easy part :P. Still need to sort out the command buffers,
synchronization, and particle generation (and probably a bunch else
that's not coming to mind).
It turned out the bindless approach wouldn't work too well for my design
of the sprite objects, but I don't think that's a big issue at this
stage (and it seems bindless is causing problems for brush/alias
rendering via renderdoc and on my versa pro). However, I have figured
out how to make effective use of descriptor sets (finally :P).
The actual normal still needs checking, but the sprites are currently
unlit so not an issue at this stage.
This adds the shaders and the pipeline specs. I'm not sure that the
deferred rendering side of the render pass is appropriate, but I thought
I'd give it a go, since quake sprites are really cutoff rather than
translucent.
With the switch to multi-layer textures for brush models, the bsp and
alias texture descriptor sets became identical and thus the definitions
shareable. However, due to complications I don't want to address yet,
they're still separately identified, but I should be able to use the
texture set for most, if not all, pipelines.
This gets the alias pipeline in line with the bsp pipeline, and thus
everything is about as functional as it was before the rework (minus
dealing with large texture sets).
I guess it's not quite bindless as the texture index is a push constant,
but it seems to work well (and I may have fixed some full-bright issues
by accident, though I suspect that's just my imagination, but they do
look good).
This should fix the horrid frame rate dependent behavior of the view
model.
They are also in their own descriptor set so they can be easily shared
between pipelines. This has been verified to work for Draw.
Smashing everything in the process :P (need to work on the C side).
However, while bindless is supposedly good for performance, the biggest
gain this will bring is portability: the texture counts are
automatically limited to what the hardware can handle, and the reliance
on push descriptors is removed (though they were nice and did help get
things up and running).
My VersaPro doesn't support more than 32 per-stage samplers (lavapipe).
This is a small part of getting Vulkan to run on lavapipe and even in
itself is rather incomplete.
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.
This gets the shaders needed for creating shadow maps, and the changes
to the lighting pipeline for binding the shadow maps, but no generation
or reading is done yet. It feels like parts of various systems are
getting a little big for their britches and I need to do an audit of
various things.
Loading is broken for multi-file image sets due to the way images are
loaded (this needs some thought for making it effecient), but the
Blender environment map loading works.
They're unlit (fullbright, but that's nothing new for quake), but
working nicely. As a bonus, sort out the sky pass (forced to due to the
way command buffers are used).
There were actually several problems: translucency wasn't using or
depending on the depth buffer, and the depth buffer wasn't marked as
read-only in the g-buffer pass. Getting that correct seems to have given
bigass1 a 0.5% boost (hard to say, could be the usual noise).
While being able to write pipeline specs like this was the end goal of
the parsing sub-project, I didn't realize it was already usable. This
sure makes going through the pipeline specs much easier.
That was... easier than expected. A little more tedious that I would
have liked, but my scripting system isn't perfect (I suspect it's best
suited as the output of a code generator), and the C side could do with
a little more automation.
Light styles and shadows aren't implemented yet.
The map's entities are used to create the lights, and the PVS used to
determine which lights might be visible (ie, the surfaces they light).
That could do with some more improvements (eg, checking if a leaf is
outside a spotlight's cone), but the concept seems to work.
Static lights are yet to come (so the screen is black most of the time),
but dynamic lights work very nicely (and look very good) despite the
falloff being incorrect.
While I could reconstruct the position from the screen coords and depth,
this is easier and good enough for now. Reconstruction is an
optimization thing.
Lighting doesn't actually do lights yet, but it's producing pixels.
Translucent seems to be working (2d draw uses it), and compose seems to
be working.
This gets the alias model render pass and pipeline passing validation.
I don't know why I didn't add the subpass field to the
VkGraphicsPipelineCreateInfo parser def, though it could be I simply
missed it, or I thought I wouldn't need it at the time.
After getting lights even vaguely working for alias models, I realized
that it just wasn't going to be feasible to do nice lighting with
forward rendering. This gets the bulk of the work done for deferred
rendering, but still need to sort out the shaders before any real
testing can be done.
It turns out I had conflated frame buffers with frames and wound up
making a minor mess when separating the number of frames the renderer
could have in flight from the number of swap-chain images. This is the
first step towards correcting that mistake.
It's not entirely there yet, but the basics are working. Work is still
needed for avoiding duplication of objects (different threads will have
different contexts and thus different tables, so necessary per-thread
duplication should not become a problem) and general access to arbitrary
fields (mostly just parsing the strings)