It turned out that address mode B was redundant as C with 0 offset
(immediate) was the same (except for the underlying C code of course,
but adding st->b is very cheap). This allowed B to be used for
entity.field for all transfer operations. Thus instructions 0-3 are now
free as load E became load B, and other than the specifics of format
codes for statement printing, transfers+lea are unified.
For the most part, it wasn't too bad as it's just a rotation of the
operands for some instructions (store, assign, branch), but dealing with
all the direct accesses to specific operands was a small pain. I am very
glad I made all those automated tests :)
This makes the v6p instruction table consistent with the ruamoko
instruction table, and clears up some of the ugliness with the load,
store, and assign instructions (. .= and = are now spelled out). I think
I'd still prefer an enum code (faster) but at least this is more
readable.
Missed this case in duplicate_type. Allows "short foo" and
"sizeof(short)" (even though qfcc and the engine have two ideas of the
size: I expect trouble later).
long is ignored for double, and v6p progs are stuck with 32 bits for
longs (don't feel like extending v6p any further), but the basics are
there for Ruamoko.
short is ignored for ints because the minimum size is 32, and signed is
just noise for ints anyway (and no chars, so...).
unsigned, however, is finally implemented properly (or at least seems to
be working correctly: tests pass after getting things compiling again,
and lt.u is used where it should be :)
Attempting to add ev_ushort caused ptraliasenc to break, but that was
because it was already broken: I had implemented the scan of the xdef
table incorrectly, thus adding only 1 ev type resulted in the walked
pointer being out of phase with its data due to it first passing over
the type encodings (which is why adding long and ulong didn't cause any
obvious trouble).
And provide a table for such for qfcc and the like. With this, using
pr_double_t (for example) in C will cause the double value to always be
8-byte aligned and thus structures shared between gcc and qfcc will be
consistent (with a little fuss to take care of the warts).
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
They are both gone, and pr_pointer_t is now pr_ptr_t (pointer may be a
little clearer than ptr, but ptr is consistent with things like intptr,
and keeps the type name short).
This required delaying the setting of the return pointer by call until
after the current pointer had been saved, and thus passing the desired
pointer into PR_CallFunction (which does have some advantages for C
functions calling progs functions, but some dangers too (should ensure a
128 byte (32 word) buffer when calling untrusted code (which is any,
really)).
This fixes the issue of the data stack not being restored properly
because the returning function needs to return a value from its local
variables (stored on the stack) and accessing stack data below the stack
pointer is a bad idea (sure, no interrupts yet, but who knows...).
Call's operand c is used to specify where the return value of the
function is to be stored. This gets both the correct function being
called, and the value being returned correctly. Test still fails due to
the stack restoration issue.
It currently fails for two reasons:
- call's mode selection is incorrect (never updated from when there was
only the one call instruction and the mode was encoded in operand c)
- return should automatically restore the stack pointer to the value it
had on entry to the function, thus allowing local values stored on
the stack to be safely returned.
I don't know why they were ever signed (oversight at id and just
propagated?). Anyway, this resulted in "unsigned" spreading a bit, but
all to reasonable places.
This has been a long-held wishlist item, really, and I thought I might
as well take the opportunity to add the instructions. The double
versions of STATE require both the nextthink field and time global to be
double (but they're not resolved properly yet: marked with
"FIXME double time" comments).
Also, the frame number for double time state is integer rather than
float.