While the libraries are probably getting a little out of hand, the
separation into its own directory is probably a good thing as an ECS
should not be tied to scenes. This should make the ECS more generally
useful.
Since entity_t has a pointer to the registry owning the entity, there's
no need to access a global to get at the registry. Also move component
getting closer to where it's used.
This puts the hierarchy (transform) reference, animation, visibility,
renderer, active, and old_origin data in separate components. There are
a few bugs (crashes on grenade explosions in gl/glsl/vulkan, immediately
in sw, reasons known, missing brush models in vulkan).
While quake doesn't really need an ECS, the direction I want to take QF
does, and it does seem to have improved memory bandwidth a little
(uncertain). However, there's a lot more work to go (especially fixing
the above bugs), but this seems to be a good start.
This does mean that the gl and sw renderers can no longer call
S_ExtraUpdate, but really, they shouldn't be anyway. And I seem to
remember it not really helping (been way too long since quake ran that
slowly for me).
This is an extremely extensive patch as it hits every cvar, and every
usage of the cvars. Cvars no longer store the value they control,
instead, they use a cexpr value object to reference the value and
specify the value's type (currently, a null type is used for strings).
Non-string cvars are passed through cexpr, allowing expressions in the
cvars' settings. Also, cvars have returned to an enhanced version of the
original (id quake) registration scheme.
As a minor benefit, relevant code having direct access to the
cvar-controlled variables is probably a slight optimization as it
removed a pointer dereference, and the variables can be located for data
locality.
The static cvar descriptors are made private as an additional safety
layer, though there's nothing stopping external modification via
Cvar_FindVar (which is needed for adding listeners).
While not used yet (partly due to working out the design), cvars can
have a validation function.
Registering a cvar allows a primary listener (and its data) to be
specified: it will always be called first when the cvar is modified. The
combination of proper listeners and direct access to the controlled
variable greatly simplifies the more complex cvar interactions as much
less null checking is required, and there's no need for one cvar's
callback to call another's.
nq-x11 is known to work at least well enough for the demos. More testing
will come.
Finally. I never liked it (felt bad adding it in the first place), and
it has caused confusion with function and global variable names, but it
did let me get the render plugins working.
So far, in gl and glsl, but viewposition is much clearer than r_origin
(despite being the same thing), and modelorg is just confusing (I think
it's the view position relative to the current model).
This is a step towards high-level unification of the renderers, as far
as possible keeping only actual low-level implementation details in the
individual renderers (some higher level stuff, eg shadows, is expected
to be per-renderer as some things are just not feasible to implement in
all renderers). However, the idea is to move the high-level
functionality into scene rendering.
For now, the functions check for a null hunk pointer and use the global
hunk (initialized via Memory_Init) if necessary. However, Hunk_Init is
available (and used by Memory_Init) to create a hunk from any arbitrary
memory block. So long as that block is 64-byte aligned, allocations
within the hunk will remain 64-byte aligned.
This is the first step towards component-based entities.
There's still some transform-related stuff in the struct that needs to
be moved, but it's all entirely client related (rather than renderer)
and will probably go into a "client" component. Also, the current
components are directly included structs rather than references as I
didn't want to deal with the object management at this stage.
As part of the process (because transforms use simd) this also starts
the process of moving QF to using simd for vectors and matrices. There's
now a mess of simd and sisd code mixed together, but it works
surprisingly well together.
This is a big step towards a cleaner api. The struct reference in
model_t really should be a pointer, but bsp submodel(?) loading messed
that up, though that's just a matter of taking more care in the loading
code. It seems sensible to make that a separate step.
The setup had been lost at some stage, thus shadows were always directly
under the entity. Unlike the original quake shadow code, the vector is
correctly transformed into the entity's space.
I finally found the cause of Despair's gl shadows non-rendering+segfault...
the shadow code expected triangle fans and strips but was getting simple
triangles. Oops.
Where possible, symbols have been made static, prefixed with gl_/GL_ or
moved into the code shared by all renderers. This will make doing plugins
easier but done now for link testing.
For now, only the glsl loader disables caching, but it stores the frame
vertices in GL memory, so its hunk usage is relatively lower (and will be
lower still when I get skins sorted out).
After getting in contact with serplord, I now know that the sw alias
loading was correct. Turns out the gl loaders was mostly correct, just a
mistaken subtract rather than add. And with that, I can implement alias-16
support in glsl. better yet, since all the work is done in the loader, the
renderer doesn't know anything about it :) However, I need to create some
16-bit models for testing.
It turns out that due to the way we do fullbrights, nothing special needs
to be done to get the fullbright texture blended with the model even when
fog is enabled.