I had missed that vkCmdCopyImage requires the source and destination
images to have exactly the same size, and I guess assumed that the
swapchain images would always be the size they said they were, but this
is not the case for tiled-optimal images. However,
vkCmdCopyImageToBuffer does the right thing regardless of the source
image size.
This fixes the skewed screenshots when the window size is not a multiple
of 8 (for me, might differ for others).
There's a problem with screenshot capture in that the image is sheared
after window resize, but the screen view looks good, and vulkan is happy
with the state changes.
I've found and mostly isolated the parts of the code that will be
affected by window resizing, minus pipelines but they use dynamic
viewport and scissor settings and thus shouldn't be affected so long as
the swapchain format doesn't change (how does that happen?)
Finally, the model_funcs and render_funcs struts use designated
initializers. Not only are they good for ensuring correct
initialization, they're great for the programmer finding the right
initializer.
Sounds odd, but it's part of the problem with calling two different
things with essentially the same name. The "high level" render pass in
question may be a compute pass, or a complex series of (Vulkan) render
passes and so won't create a Vulkan render pass for the "high level"
render pass (I do need to come up with a better name for it).
I really don't remember why I made it separate, though it may have been
to do with r_ent_queue. However, putting it together with the rest is
needed for the "render pass" rework.
It now lives in vulkan_renderpass.c and takes most of its parameters
from plist configs (just the name (which is used to find the config),
output spec, and draw function from C). Even the debug colors and names
are taken from the config.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
This breaks console scaling for now (con_width and con_height are gone),
but is a major step towards window resize support as console stuff
should never have been in viddef_t in the first place.
The client screen init code now sets up a screen view (actually the
renderer's scr_view) that is passed to the client console so it can know
the size of the screen. The same view is used by the status bar code.
Also, the ram/cache/paused icon drawing is moved into the client screen
update code. A bit of duplication, but I do plan on merging that
eventually.
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.
It's implemented only in the Vulkan renderer, partly because there's a
lot of experimenting going on with it, but the glyphs do get transferred
to the GPU (checked in render doc). No rendering is done yet: still
thinking about whether to do a quick-and-dirty test, or to add HarfBuzz
immediately, and the design surrounding that.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
This allows the use of an entity id to index into the entity data and
fetch the transform and colormod data in the vertex shader, thus making
instanced rendering possible. Non-world brush entities are still not
rendered, but the world entity is using both the entity data buffer and
entid buffer.
Since the staging buffer allocates the command buffers it uses, it
needs to free them when it is freed. I think I was confused by the
validation layers not complaining about unfreed buffers when shutting
down, but that's because destroying the pool (during program shutdown,
when the validation layers would complain) frees all the buffers. Thus,
due to staging buffers being created and destroyed during the level load
process, (rather large) command buffers were piling up like imps in a
Doom level.
In the process, it was necessary to rearrange some of the shutdown code
because vulkan_vid_render_shutdown destroys the shared command pool, but
the pool is required for freeing the command buffers, but there was a
minor mess of long-lived staging buffers being freed afterwards. That
didn't end particularly well.
The bones aren't animated yet (and I realized I made the mistake of
thinking the bone buffer was per-model when it's really per-instance (I
think this mistake is in the rest of QF, too)), skin rendering is a
mess, need to default vertex attributes that aren't in the model...
Still, it's quite satisfying seeing Mr Fixit on screen again :)
I wound up moving the pipeline spec in with the rest of the pipelines as
the system isn't really ready for separating them.
This replaces *_NewMap with *_NewScene and adds SCR_NewScene to handle
loading a new map (for quake) in the renderer, and will eventually be
how any new scene is loaded.
Id Software had pretty much nothing to do with the vulkan renderer (they
still get credit for code that's heavily based on the original quake
code, of course).
Despite the base IQM specification not supporting blend-shapes, I think
IQM will become the basis for QF's generic model representation (at
least for the more advanced renderers). After my experience with .mu
models (KSP) and unity mesh objects (both normal and skinned), and
reviewing the IQM spec, it looks like with the addition of support for
blend-shapes, IQM is actually pretty good.
This is just the preliminary work to get standard IQM models loading in
vulkan (seems to work, along with unloading), and they very basics into
the renderer (most likely not working: not tested yet). The rest of the
renderer seems to be unaffected, though, which is good.
This is an extremely extensive patch as it hits every cvar, and every
usage of the cvars. Cvars no longer store the value they control,
instead, they use a cexpr value object to reference the value and
specify the value's type (currently, a null type is used for strings).
Non-string cvars are passed through cexpr, allowing expressions in the
cvars' settings. Also, cvars have returned to an enhanced version of the
original (id quake) registration scheme.
As a minor benefit, relevant code having direct access to the
cvar-controlled variables is probably a slight optimization as it
removed a pointer dereference, and the variables can be located for data
locality.
The static cvar descriptors are made private as an additional safety
layer, though there's nothing stopping external modification via
Cvar_FindVar (which is needed for adding listeners).
While not used yet (partly due to working out the design), cvars can
have a validation function.
Registering a cvar allows a primary listener (and its data) to be
specified: it will always be called first when the cvar is modified. The
combination of proper listeners and direct access to the controlled
variable greatly simplifies the more complex cvar interactions as much
less null checking is required, and there's no need for one cvar's
callback to call another's.
nq-x11 is known to work at least well enough for the demos. More testing
will come.
Really, this won't make all that much difference because alias models
with more than one skin are quite rare, and those with animated skin
groups are even rarer. However, for those models that do have more than
one skin, it will allow for reduced allocation overheads, and when
supported (glsl, vulkan, maybe gl), loading all the skins into an array
texture (since all skins are the same size, though external skins may
vary), but that's not implemented yet, this just wraps the old one skin
at a time code.
This means that a tex_t object is passed in instead of just raw bytes
and width and height, but it means the texture can specify whether it's
flipped or uses BGR instead of RGB. This fixes the upside down
screenshots for vulkan.
This fixes (*ahem*) the vulkan renderer segfaulting when attempting to
take a screenshot. However, the image is upside down. Also, remote
snapshots and demo capture are broken for the moment.
QFS_NextFilename was renamed to QFS_NextFile to reflect the fact it now
returns a QFile pointer for the newly created file (as well as the
name). This necessitated updating WritePNG to take a file pointer
instead of a file name, with the advantage that WritePNGqfs is no longer
necessary and callers have much more control over the creation of the
file.
This makes QFS_NextFile much more secure against file system race
conditions and attacks (at least in theory). If nothing else, it will
make it more robust in a multi-threaded environment.
Viewport and FOV updates are now separate so updating one doesn't cause
recalculations of the other. Also, perspective setup is now done
directly from the tangents of the half angles for fov_x and fov_y making
the renderers independent of fov/aspect mode. I imagine things are a bit
of a mess with view size changes, and especially screen size changes
(not supported yet anyway), and vulkan winds up updating its projection
matrices every frame, but everything that's expected to work does
(vulkan errors out for fisheye or warp due to frame buffer creation not
being supported yet).
While it's not where I want it to be, it at least now no longer messes
with frame buffer binding or the view ports. This involved switching
around buffers in D_WarpScreen so that the main buffer could be bound
before post-processing.
Again, gl/vulkan not working yet (on the assumption that sw would be
trickier).
Fisheye overrides water warp because updating the projection map every
frame is far too expensive.
I've added a post-process pass to the interface in order to hide the
implementation details, but I'm not sure I'm happy about how the
multi-pass rendering for cube maps is handled (or having the frame
buffers as exposed as they are), but mainly because Vulkan will make
implementation interesting.
For now, OpenGL and Vulkan renderers are broken as I focused on getting
the software renderer working (which was quite tricky to get right).
This fixes a couple of issues: the segfault when warping the screen (due
to the scene rendering move invalidating the warp buffer), and warp
always having 320x200 resolution. There's still the problem of the
effect being too subtle at high resolution, but that's just a matter of
updating the tables and tweaking the code in D_WarpScreen.
Another issue is the Draw functions should probably write directly to
the main frame buffer or even one passed in as a parameter. This would
remove the need for binding the main buffer at the beginning and end of
the frame.
Other than the view model (undecided on the approach) this has
R_RenderView pretty much pulled out of the low level renderers. With
this, I'll be able to focus on scene handling for a bit then getting
shadows and fisheye working (again for fisheye).
r_screen isn't really the right place, but it gets the scene rendering
out of the low-level renderers and will make it easier to sort out
later, and hopefully easier to figure out a good design for vulkan.
GL still has its own functions for enabling and disabling fog while
rendering, but GLSL doesn't need such (thanks to the shaders), nor will
vulkan (and the software renderers don't support fog).
This is a step towards high-level unification of the renderers, as far
as possible keeping only actual low-level implementation details in the
individual renderers (some higher level stuff, eg shadows, is expected
to be per-renderer as some things are just not feasible to implement in
all renderers). However, the idea is to move the high-level
functionality into scene rendering.
Only CaptureBGR is per-renderer as the rest of the screenshot code uses
it to do the actual capture (which is target dependent). Vulkan is
currently broken due to capture being an asynchronous process and the
rest of the code expecting capture to be synchronous (also, bgr vs rgb).
The best thing is all renderers now write the same format (currently
png).
While there's currently only the one still, this will allow the entities
to be multiply queued for multi-pass rendering (eg, shadows). As the
avoidance of putting an entity in the same queue more than once relies
on the entity id, all entities now come from the scene (which is stored
in cl_world in the client code for nq and qw), thus the extensive
changes in the clients.