quakeforge/libs/video/renderer/vulkan/vulkan_bsp.c

1677 lines
51 KiB
C
Raw Normal View History

/*
vulkan_bsp.c
Vulkan bsp
Copyright (C) 2012 Bill Currie <bill@taniwha.org>
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2012/1/7
Date: 2021/1/18
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/darray.h"
#include "QF/heapsort.h"
#include "QF/image.h"
#include "QF/render.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/math/bitop.h"
#include "QF/scene/entity.h"
#include "QF/Vulkan/qf_bsp.h"
#include "QF/Vulkan/qf_lightmap.h"
#include "QF/Vulkan/qf_matrices.h"
#include "QF/Vulkan/qf_renderpass.h"
#include "QF/Vulkan/qf_scene.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/qf_translucent.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/command.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/descriptor.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/scrap.h"
#include "QF/Vulkan/staging.h"
#include "QF/simd/types.h"
#include "r_internal.h"
#include "vid_vulkan.h"
#define TEX_SET 3
#define SKYBOX_SET 4
2021-12-17 06:51:33 +00:00
typedef struct bsp_push_constants_s {
quat_t fog;
float time;
float alpha;
float turb_scale;
2021-12-17 06:51:33 +00:00
} bsp_push_constants_t;
static const char * __attribute__((used)) bsp_pass_names[] = {
"depth",
"g-buffer",
"sky",
"turb",
};
static QFV_Subpass subpass_map[] = {
[QFV_bspDepth] = QFV_passDepth,
[QFV_bspGBuffer] = QFV_passGBuffer,
[QFV_bspSky] = QFV_passTranslucentFrag,
[QFV_bspTurb] = QFV_passTranslucentFrag,
};
static void
add_texture (texture_t *tx, vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
vulktex_t *tex = tx->render;
if (tex->tex) {
tex->tex_id = bctx->registered_textures.size;
DARRAY_APPEND (&bctx->registered_textures, tex);
tex->descriptor = Vulkan_CreateTextureDescriptor (ctx, tex->tex,
bctx->sampler);
}
}
static inline void
chain_surface (const bsp_face_t *face, bsp_pass_t *pass, const bspctx_t *bctx)
{
int ent_frame = pass->ent_frame;
// if the texture has no alt animations, anim_alt holds the sama data
// as anim_main
const texanim_t *anim = ent_frame ? &bctx->texdata.anim_alt[face->tex_id]
: &bctx->texdata.anim_main[face->tex_id];
int anim_ind = (bctx->anim_index + anim->offset) % anim->count;
int tex_id = bctx->texdata.frame_map[anim->base + anim_ind];
DARRAY_APPEND (&pass->face_queue[tex_id],
((instface_t) { pass->inst_id, face - bctx->faces }));
}
static void
register_textures (mod_brush_t *brush, vulkan_ctx_t *ctx)
{
texture_t *tex;
for (unsigned i = 0; i < brush->numtextures; i++) {
tex = brush->textures[i];
if (!tex)
continue;
add_texture (tex, ctx);
}
}
static void
clear_textures (vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
if (bctx->main_pass.face_queue) {
for (size_t i = 0; i < bctx->registered_textures.size; i++) {
DARRAY_CLEAR (&bctx->main_pass.face_queue[i]);
}
free (bctx->main_pass.face_queue);
bctx->main_pass.face_queue = 0;
}
bctx->registered_textures.size = 0;
}
void
Vulkan_RegisterTextures (model_t **models, int num_models, vulkan_ctx_t *ctx)
{
clear_textures (ctx);
add_texture (r_notexture_mip, ctx);
{
// FIXME make worldmodel non-special. needs smarter handling of
// textures on sub-models but not on main model.
mod_brush_t *brush = &r_refdef.worldmodel->brush;
register_textures (brush, ctx);
}
for (int i = 0; i < num_models; i++) {
model_t *m = models[i];
if (!m)
continue;
// sub-models are done as part of the main model
if (*m->path == '*')
continue;
// world has already been done, not interested in non-brush models
// FIXME see above
if (m == r_refdef.worldmodel || m->type != mod_brush)
continue;
mod_brush_t *brush = &m->brush;
brush->numsubmodels = 1; // no support for submodels in non-world model
register_textures (brush, ctx);
}
bspctx_t *bctx = ctx->bsp_context;
int num_tex = bctx->registered_textures.size;
texture_t **textures = alloca (num_tex * sizeof (texture_t *));
textures[0] = r_notexture_mip;
for (int i = 0, t = 1; i < num_models; i++) {
model_t *m = models[i];
// sub-models are done as part of the main model
if (!m || *m->path == '*') {
continue;
}
mod_brush_t *brush = &m->brush;
for (unsigned j = 0; j < brush->numtextures; j++) {
if (brush->textures[j]) {
textures[t++] = brush->textures[j];
}
}
}
// 2.5 for two texanim_t structs (32-bits each) and 1 uint16_t for each
// element
size_t texdata_size = 2.5 * num_tex * sizeof (texanim_t);
texanim_t *texdata = Hunk_AllocName (0, texdata_size, "texdata");
bctx->texdata.anim_main = texdata;
bctx->texdata.anim_alt = texdata + num_tex;
bctx->texdata.frame_map = (uint16_t *) (texdata + 2 * num_tex);
int16_t map_index = 0;
for (int i = 0; i < num_tex; i++) {
texanim_t *anim = bctx->texdata.anim_main + i;
if (anim->count) {
// already done as part of an animation group
continue;
}
*anim = (texanim_t) { .base = map_index, .offset = 0, .count = 1 };
bctx->texdata.frame_map[anim->base] = i;
if (textures[i]->anim_total > 1) {
// bsp loader multiplies anim_total by ANIM_CYCLE to slow the
// frame rate
anim->count = textures[i]->anim_total / ANIM_CYCLE;
texture_t *tx = textures[i]->anim_next;
for (int j = 1; j < anim->count; j++) {
if (!tx) {
Sys_Error ("broken cycle");
}
vulktex_t *vtex = tx->render;
texanim_t *a = bctx->texdata.anim_main + vtex->tex_id;
if (a->count) {
Sys_Error ("crossed cycle");
}
*a = *anim;
a->offset = j;
bctx->texdata.frame_map[a->base + a->offset] = vtex->tex_id;
tx = tx->anim_next;
}
if (tx != textures[i]) {
Sys_Error ("infinite cycle");
}
};
map_index += bctx->texdata.anim_main[i].count;
}
for (int i = 0; i < num_tex; i++) {
texanim_t *alt = bctx->texdata.anim_alt + i;
if (textures[i]->alternate_anims) {
texture_t *tx = textures[i]->alternate_anims;
vulktex_t *vtex = tx->render;
*alt = bctx->texdata.anim_main[vtex->tex_id];
} else {
*alt = bctx->texdata.anim_main[i];
}
}
// create face queue arrays
bctx->main_pass.face_queue = malloc (num_tex * sizeof (bsp_instfaceset_t));
for (int i = 0; i < num_tex; i++) {
bctx->main_pass.face_queue[i]
= (bsp_instfaceset_t) DARRAY_STATIC_INIT (128);
}
}
typedef struct {
msurface_t *face;
model_t *model;
int model_face_base;
} faceref_t;
typedef struct DARRAY_TYPE (faceref_t) facerefset_t;
static void
count_verts_inds (const faceref_t *faceref, uint32_t *verts, uint32_t *inds)
{
msurface_t *surf = faceref->face;
*verts = surf->numedges;
*inds = surf->numedges + 1;
}
typedef struct bspvert_s {
quat_t vertex;
quat_t tlst;
} bspvert_t;
typedef struct {
bsp_face_t *faces;
uint32_t *indices;
bspvert_t *vertices;
uint32_t index_base;
uint32_t vertex_base;
int tex_id;
} buildctx_t;
static void
build_surf_displist (const faceref_t *faceref, buildctx_t *build)
{
msurface_t *surf = faceref->face;
mod_brush_t *brush = &faceref->model->brush;;
int facenum = surf - brush->surfaces;
bsp_face_t *face = &build->faces[facenum + faceref->model_face_base];
// create a triangle fan
int numverts = surf->numedges;
face->first_index = build->index_base;
face->index_count = numverts + 1; // +1 for primitive restart
face->tex_id = build->tex_id;
face->flags = surf->flags;
build->index_base += face->index_count;
for (int i = 0; i < numverts; i++) {
build->indices[face->first_index + i] = build->vertex_base + i;
}
build->indices[face->first_index + numverts] = -1; // primitive restart
bspvert_t *verts = build->vertices + build->vertex_base;
build->vertex_base += numverts;
mtexinfo_t *texinfo = surf->texinfo;
mvertex_t *vertices = brush->vertexes;
medge_t *edges = brush->edges;
int *surfedges = brush->surfedges;
for (int i = 0; i < numverts; i++) {
vec_t *vec;
int index = surfedges[surf->firstedge + i];
if (index > 0) {
// forward edge
vec = vertices[edges[index].v[0]].position;
} else {
// reverse edge
vec = vertices[edges[-index].v[1]].position;
}
VectorCopy (vec, verts[i].vertex);
verts[i].vertex[3] = 1; // homogeneous coord
vec2f_t st = {
DotProduct (vec, texinfo->vecs[0]) + texinfo->vecs[0][3],
DotProduct (vec, texinfo->vecs[1]) + texinfo->vecs[1][3],
};
verts[i].tlst[0] = st[0] / texinfo->texture->width;
verts[i].tlst[1] = st[1] / texinfo->texture->height;
if (surf->lightpic) {
//lightmap texture coordinates
//every lit surface has its own lighmap at a 1/16 resolution
//(ie, 16 albedo pixels for every lightmap pixel)
const vrect_t *rect = surf->lightpic->rect;
vec2f_t lmorg = (vec2f_t) { VEC2_EXP (&rect->x) } * 16 + 8;
vec2f_t texorg = { VEC2_EXP (surf->texturemins) };
st = ((st - texorg + lmorg) / 16) * surf->lightpic->size;
verts[i].tlst[2] = st[0];
verts[i].tlst[3] = st[1];
} else {
// no lightmap for this surface (probably sky or water), so
// make the lightmap texture polygone degenerate
verts[i].tlst[2] = 0;
verts[i].tlst[3] = 0;
}
}
}
void
Vulkan_BuildDisplayLists (model_t **models, int num_models, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
if (!num_models) {
return;
}
facerefset_t *face_sets = alloca (bctx->registered_textures.size
* sizeof (facerefset_t));
for (size_t i = 0; i < bctx->registered_textures.size; i++) {
face_sets[i] = (facerefset_t) DARRAY_STATIC_INIT (1024);
}
for (int i = 0; i < bctx->num_models; i++) {
DARRAY_CLEAR (&bctx->main_pass.instances[i].entities);
}
free (bctx->main_pass.instances);
bctx->num_models = 0;
// run through all surfaces, chaining them to their textures, thus
// effectively sorting the surfaces by texture (without worrying about
// surface order on the same texture chain).
int face_base = 0;
for (int i = 0; i < num_models; i++) {
model_t *m = models[i];
// sub-models are done as part of the main model
// and non-bsp models don't have surfaces.
if (!m || m->type != mod_brush) {
continue;
}
m->render_id = bctx->num_models++;
if (*m->path == '*') {
continue;
}
mod_brush_t *brush = &m->brush;
dmodel_t *dm = brush->submodels;
for (unsigned j = 0; j < brush->numsurfaces; j++) {
if (j == dm->firstface + dm->numfaces) {
// move on to the next sub-model
dm++;
2021-08-02 05:02:41 +00:00
if (dm == brush->submodels + brush->numsubmodels) {
// limit the surfaces
// probably never hit
Sys_Printf ("Vulkan_BuildDisplayLists: too many faces\n");
brush->numsurfaces = j;
break;
}
}
msurface_t *surf = brush->surfaces + j;
// append surf to the texture chain
vulktex_t *tex = surf->texinfo->texture->render;
DARRAY_APPEND (&face_sets[tex->tex_id],
((faceref_t) { surf, m, face_base }));
}
face_base += brush->numsurfaces;
}
bctx->main_pass.instances = malloc (bctx->num_models
* sizeof (bsp_instance_t));
for (int i = 0; i < bctx->num_models; i++) {
DARRAY_INIT (&bctx->main_pass.instances[i].entities, 16);
}
// All vertices from all brush models go into one giant vbo.
uint32_t vertex_count = 0;
uint32_t index_count = 0;
uint32_t poly_count = 0;
// This is not optimal as counted vertices are not shared between faces,
// however this greatly simplifies display list creation as no care needs
// to be taken when it comes to UVs, and every vertex needs a unique light
// map UV anyway (when lightmaps are used).
for (size_t i = 0; i < bctx->registered_textures.size; i++) {
for (size_t j = 0; j < face_sets[i].size; j++) {
faceref_t *faceref = &face_sets[i].a[j];
uint32_t verts, inds;
count_verts_inds (faceref, &verts, &inds);
vertex_count += verts;
index_count += inds;
poly_count++;
}
}
size_t atom = device->physDev->properties->limits.nonCoherentAtomSize;
size_t atom_mask = atom - 1;
size_t frames = bctx->frames.size;
size_t index_buffer_size = index_count * frames * sizeof (uint32_t);
size_t vertex_buffer_size = vertex_count * sizeof (bspvert_t);
index_buffer_size = (index_buffer_size + atom_mask) & ~atom_mask;
qfv_stagebuf_t *stage = QFV_CreateStagingBuffer (device, "bsp",
vertex_buffer_size,
ctx->cmdpool);
qfv_packet_t *packet = QFV_PacketAcquire (stage);
bspvert_t *vertices = QFV_PacketExtend (packet, vertex_buffer_size);
// holds all the polygon definitions: vertex indices + poly_count
// primitive restart markers. The primitive restart markers are included
// in index_count.
// so each polygon within the list:
// index count-1 indices
// index
// ...
// "end of primitive" (~0u)
free (bctx->faces);
free (bctx->poly_indices);
free (bctx->models);
bctx->models = malloc (bctx->num_models * sizeof (bsp_model_t));
bctx->faces = malloc (face_base * sizeof (bsp_face_t));
bctx->poly_indices = malloc (index_count * sizeof (uint32_t));
face_base = 0;
for (int i = 0; i < num_models; i++) {
if (!models[i] || models[i]->type != mod_brush) {
continue;
}
int num_faces = models[i]->brush.numsurfaces;
bsp_model_t *m = &bctx->models[models[i]->render_id];
m->first_face = face_base + models[i]->brush.firstmodelsurface;
m->face_count = models[i]->brush.nummodelsurfaces;
while (i < num_models - 1 && models[i + 1]
&& models[i + 1]->path[0] == '*') {
i++;
m = &bctx->models[models[i]->render_id];
m->first_face = face_base + models[i]->brush.firstmodelsurface;
m->face_count = models[i]->brush.nummodelsurfaces;
}
face_base += num_faces;;
}
// All usable surfaces have been chained to the (base) texture they use.
// Run through the textures, using their chains to build display lists.
// For animated textures, if a surface is on one texture of the group, it
// will effectively be on all (just one at a time).
buildctx_t build = {
.faces = bctx->faces,
.indices = bctx->poly_indices,
.vertices = vertices,
.index_base = 0,
.vertex_base = 0,
};
for (size_t i = 0; i < bctx->registered_textures.size; i++) {
build.tex_id = i;
for (size_t j = 0; j < face_sets[i].size; j++) {
faceref_t *faceref = &face_sets[i].a[j];
build_surf_displist (faceref, &build);
}
}
Sys_MaskPrintf (SYS_vulkan,
"R_BuildDisplayLists: verts:%u, inds:%u, polys:%u\n",
vertex_count, index_count, poly_count);
if (index_buffer_size > bctx->index_buffer_size) {
if (bctx->index_buffer) {
dfunc->vkUnmapMemory (device->dev, bctx->index_memory);
dfunc->vkDestroyBuffer (device->dev, bctx->index_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->index_memory, 0);
}
bctx->index_buffer
= QFV_CreateBuffer (device, index_buffer_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, bctx->index_buffer,
"buffer:bsp:index");
bctx->index_memory
= QFV_AllocBufferMemory (device, bctx->index_buffer,
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
index_buffer_size, 0);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY,
bctx->index_memory, "memory:bsp:index");
QFV_BindBufferMemory (device,
bctx->index_buffer, bctx->index_memory, 0);
bctx->index_buffer_size = index_buffer_size;
void *data;
dfunc->vkMapMemory (device->dev, bctx->index_memory, 0,
index_buffer_size, 0, &data);
uint32_t *index_data = data;
for (size_t i = 0; i < frames; i++) {
uint32_t offset = index_count * i;
bctx->frames.a[i].index_data = index_data + offset;
bctx->frames.a[i].index_offset = offset * sizeof (uint32_t);
bctx->frames.a[i].index_count = 0;
}
}
if (vertex_buffer_size > bctx->vertex_buffer_size) {
if (bctx->vertex_buffer) {
dfunc->vkDestroyBuffer (device->dev, bctx->vertex_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->vertex_memory, 0);
}
bctx->vertex_buffer
= QFV_CreateBuffer (device, vertex_buffer_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER,
bctx->vertex_buffer, "buffer:bsp:vertex");
bctx->vertex_memory
= QFV_AllocBufferMemory (device, bctx->vertex_buffer,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertex_buffer_size, 0);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY,
bctx->vertex_memory, "memory:bsp:vertex");
QFV_BindBufferMemory (device,
bctx->vertex_buffer, bctx->vertex_memory, 0);
bctx->vertex_buffer_size = vertex_buffer_size;
}
qfv_bufferbarrier_t bb = bufferBarriers[qfv_BB_Unknown_to_TransferWrite];
bb.barrier.buffer = bctx->vertex_buffer;
bb.barrier.size = vertex_buffer_size;
dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages,
0, 0, 0, 1, &bb.barrier, 0, 0);
VkBufferCopy copy_region = { packet->offset, 0, vertex_buffer_size };
dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer,
bctx->vertex_buffer, 1, &copy_region);
bb = bufferBarriers[qfv_BB_TransferWrite_to_VertexAttrRead];
bb.barrier.buffer = bctx->vertex_buffer;
bb.barrier.size = vertex_buffer_size;
dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages,
0, 0, 0, 1, &bb.barrier, 0, 0);
QFV_PacketSubmit (packet);
QFV_DestroyStagingBuffer (stage);
for (size_t i = 0; i < bctx->registered_textures.size; i++) {
DARRAY_CLEAR (&face_sets[i]);
}
}
static int
R_DrawBrushModel (entity_t ent, bsp_pass_t *pass, vulkan_ctx_t *ctx)
{
renderer_t *renderer = Ent_GetComponent (ent.id, scene_renderer, ent.reg);
model_t *model = renderer->model;
bspctx_t *bctx = ctx->bsp_context;
if (Vulkan_Scene_AddEntity (ctx, ent) < 0) {
return 0;
}
animation_t *animation = Ent_GetComponent (ent.id, scene_animation,
ent.reg);
pass->ent_frame = animation->frame & 1;
pass->inst_id = model->render_id;
pass->inst_id |= renderer->colormod[3] < 1 ? INST_ALPHA : 0;
if (!pass->instances[model->render_id].entities.size) {
bsp_model_t *m = &bctx->models[model->render_id];
bsp_face_t *face = &bctx->faces[m->first_face];
for (unsigned i = 0; i < m->face_count; i++, face++) {
// enqueue the polygon
chain_surface (face, pass, bctx);
}
}
DARRAY_APPEND (&pass->instances[model->render_id].entities,
renderer->render_id);
return 1;
}
static inline void
visit_leaf (mleaf_t *leaf)
{
// since this leaf will be rendered, any entities in the leaf also need
// to be rendered (the bsp tree doubles as an entity cull structure)
if (leaf->efrags)
R_StoreEfrags (leaf->efrags);
}
// 1 = back side, 0 = front side
static inline int
get_side (const bsp_pass_t *pass, const mnode_t *node)
{
// find the node side on which we are
vec4f_t org = pass->position;
return dotf (org, node->plane)[0] < 0;
}
static inline void
visit_node (bsp_pass_t *pass, const mnode_t *node, int side)
{
bspctx_t *bctx = pass->bsp_context;
int c;
// sneaky hack for side = side ? SURF_PLANEBACK : 0;
// seems to be microscopically faster even on modern hardware
side = (-side) & SURF_PLANEBACK;
// chain any visible surfaces on the node that face the camera.
// not all nodes have any surfaces to draw (purely a split plane)
if ((c = node->numsurfaces)) {
const bsp_face_t *face = bctx->faces + node->firstsurface;
const int *frame = pass->face_frames + node->firstsurface;
int vis_frame = pass->vis_frame;
for (; c; c--, face++, frame++) {
if (*frame != vis_frame)
continue;
// side is either 0 or SURF_PLANEBACK
// if side and the surface facing differ, then the camera is
// on backside of the surface
if (side ^ (face->flags & SURF_PLANEBACK))
continue; // wrong side
chain_surface (face, pass, bctx);
}
}
}
static inline int
test_node (const bsp_pass_t *pass, int node_id)
{
if (node_id < 0)
return 0;
if (pass->node_frames[node_id] != pass->vis_frame)
return 0;
return 1;
}
static void
R_VisitWorldNodes (bsp_pass_t *pass, vulkan_ctx_t *ctx)
{
const mod_brush_t *brush = pass->brush;
typedef struct {
int node_id;
int side;
} rstack_t;
rstack_t *node_ptr;
rstack_t *node_stack;
int node_id;
int front;
int side;
node_id = 0;
// +2 for paranoia
node_stack = alloca ((brush->depth + 2) * sizeof (rstack_t));
node_ptr = node_stack;
while (1) {
while (test_node (pass, node_id)) {
mnode_t *node = brush->nodes + node_id;
side = get_side (pass, node);
front = node->children[side];
if (test_node (pass, front)) {
node_ptr->node_id = node_id;
node_ptr->side = side;
node_ptr++;
node_id = front;
continue;
}
// front is either not a node (ie, is a leaf) or is not visible
// if node is visible, then at least one of its child nodes
// must also be visible, and a leaf child in front of the node
// will be visible, so no need for vis checks on a leaf
if (front < 0) {
mleaf_t *leaf = brush->leafs + ~front;
if (leaf->contents != CONTENTS_SOLID) {
visit_leaf (leaf);
}
}
visit_node (pass, node, side);
node_id = node->children[side ^ 1];
}
if (node_id < 0) {
mleaf_t *leaf = brush->leafs + ~node_id;
if (leaf->contents != CONTENTS_SOLID) {
visit_leaf (leaf);
}
}
if (node_ptr != node_stack) {
node_ptr--;
node_id = node_ptr->node_id;
side = node_ptr->side;
mnode_t *node = brush->nodes + node_id;
visit_node (pass, node, side);
node_id = node->children[side ^ 1];
continue;
}
break;
}
}
static void
bind_texture (vulktex_t *tex, uint32_t setnum, VkPipelineLayout layout,
qfv_devfuncs_t *dfunc, VkCommandBuffer cmd)
{
VkDescriptorSet sets[] = {
tex->descriptor,
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, setnum, 1, sets, 0, 0);
}
static void
2021-12-17 06:51:33 +00:00
push_fragconst (bsp_push_constants_t *constants, VkPipelineLayout layout,
qfv_device_t *device, VkCommandBuffer cmd)
{
2021-12-17 06:51:33 +00:00
qfv_push_constants_t push_constants[] = {
//{ VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof (mat), mat },
{ VK_SHADER_STAGE_FRAGMENT_BIT,
field_offset (bsp_push_constants_t, fog),
sizeof (constants->fog), &constants->fog },
{ VK_SHADER_STAGE_FRAGMENT_BIT,
field_offset (bsp_push_constants_t, time),
sizeof (constants->time), &constants->time },
{ VK_SHADER_STAGE_FRAGMENT_BIT,
field_offset (bsp_push_constants_t, alpha),
sizeof (constants->alpha), &constants->alpha },
{ VK_SHADER_STAGE_FRAGMENT_BIT,
field_offset (bsp_push_constants_t, turb_scale),
sizeof (constants->turb_scale), &constants->turb_scale },
2021-12-17 06:51:33 +00:00
};
QFV_PushConstants (device, cmd, layout, 4, push_constants);
}
static void
bsp_begin_subpass (QFV_BspSubpass subpass, VkPipeline pipeline,
VkPipelineLayout layout, qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
VkCommandBuffer cmd = bframe->cmdSet.a[subpass];
dfunc->vkResetCommandBuffer (cmd, 0);
VkCommandBufferInheritanceInfo inherit = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, 0,
rFrame->renderpass->renderpass, subpass_map[subpass],
rFrame->framebuffer,
0, 0, 0,
};
VkCommandBufferBeginInfo beginInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, 0,
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT
| VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, &inherit,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
QFV_duCmdBeginLabel (device, cmd, va (ctx->va_ctx, "bsp:%s",
bsp_pass_names[subpass]),
{0, 0.5, 0.6, 1});
dfunc->vkCmdBindPipeline (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline);
dfunc->vkCmdSetViewport (cmd, 0, 1, &rFrame->renderpass->viewport);
dfunc->vkCmdSetScissor (cmd, 0, 1, &rFrame->renderpass->scissor);
VkBuffer buffers[] = { bctx->vertex_buffer, bctx->entid_buffer };
VkDeviceSize offsets[] = { 0, bframe->entid_offset };
dfunc->vkCmdBindVertexBuffers (cmd, 0, 2, buffers, offsets);
dfunc->vkCmdBindIndexBuffer (cmd, bctx->index_buffer, bframe->index_offset,
VK_INDEX_TYPE_UINT32);
VkDescriptorSet sets[] = {
Vulkan_Matrix_Descriptors (ctx, ctx->curFrame),
Vulkan_Scene_Descriptors (ctx),
Vulkan_Translucent_Descriptors (ctx, ctx->curFrame),
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 3, sets, 0, 0);
//XXX glsl_Fog_GetColor (fog);
//XXX fog[3] = glsl_Fog_GetDensity () / 64.0;
}
static void
bsp_end_subpass (VkCommandBuffer cmd, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
QFV_duCmdEndLabel (device, cmd);
dfunc->vkEndCommandBuffer (cmd);
}
static void
bsp_begin (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
bspctx_t *bctx = ctx->bsp_context;
//XXX quat_t fog;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passDepth],
bframe->cmdSet.a[QFV_bspDepth]);
DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passGBuffer],
bframe->cmdSet.a[QFV_bspGBuffer]);
qfvPushDebug (ctx, "bsp_begin_subpass");
bsp_begin_subpass (QFV_bspDepth, bctx->depth, bctx->layout, rFrame);
bsp_begin_subpass (QFV_bspGBuffer, bctx->gbuf, bctx->layout, rFrame);
qfvPopDebug (ctx);
}
static void
bsp_end (vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
bsp_end_subpass (bframe->cmdSet.a[QFV_bspDepth], ctx);
bsp_end_subpass (bframe->cmdSet.a[QFV_bspGBuffer], ctx);
}
static void
turb_begin (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passTranslucentFrag],
bframe->cmdSet.a[QFV_bspTurb]);
qfvPushDebug (ctx, "bsp_begin_subpass");
bsp_begin_subpass (QFV_bspTurb, bctx->turb, bctx->layout, rFrame);
qfvPopDebug (ctx);
}
static void
turb_end (vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
bsp_end_subpass (bframe->cmdSet.a[QFV_bspTurb], ctx);
}
static void
sky_begin (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passTranslucentFrag],
bframe->cmdSet.a[QFV_bspSky]);
qfvPushDebug (ctx, "bsp_begin_subpass");
if (bctx->skybox_tex) {
bsp_begin_subpass (QFV_bspSky, bctx->skybox, bctx->layout, rFrame);
} else {
bsp_begin_subpass (QFV_bspSky, bctx->skysheet, bctx->layout, rFrame);
}
qfvPopDebug (ctx);
}
static void
sky_end (vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
bsp_end_subpass (bframe->cmdSet.a[QFV_bspSky], ctx);
}
static void
clear_queues (bspctx_t *bctx, bsp_pass_t *pass)
{
for (size_t i = 0; i < bctx->registered_textures.size; i++) {
DARRAY_RESIZE (&pass->face_queue[i], 0);
}
for (int i = 0; i < pass->num_queues; i++) {
DARRAY_RESIZE (&pass->draw_queues[i], 0);
}
for (int i = 0; i < bctx->num_models; i++) {
pass->instances[i].first_instance = -1;
DARRAY_RESIZE (&pass->instances[i].entities, 0);
}
pass->index_count = 0;
}
static void
queue_faces (bsp_pass_t *pass, const bspctx_t *bctx, bspframe_t *bframe)
{
pass->indices = bframe->index_data + bframe->index_count;
for (size_t i = 0; i < bctx->registered_textures.size; i++) {
__auto_type queue = &pass->face_queue[i];
if (!queue->size) {
continue;
}
for (size_t j = 0; j < queue->size; j++) {
__auto_type is = queue->a[j];
__auto_type f = bctx->faces[is.face];
f.flags |= ((is.inst_id & INST_ALPHA)
>> (BITOP_LOG2(INST_ALPHA)
- BITOP_LOG2(SURF_DRAWALPHA))) & SURF_DRAWALPHA;
is.inst_id &= ~INST_ALPHA;
if (pass->instances[is.inst_id].first_instance == -1) {
uint32_t count = pass->instances[is.inst_id].entities.size;
pass->instances[is.inst_id].first_instance = pass->entid_count;
memcpy (pass->entid_data + pass->entid_count,
pass->instances[is.inst_id].entities.a,
count * sizeof (uint32_t));
pass->entid_count += count;
}
int dq = 0;
if (f.flags & SURF_DRAWSKY) {
dq = 1;
}
if (f.flags & SURF_DRAWALPHA) {
dq = 2;
}
if (f.flags & SURF_DRAWTURB) {
dq = 3;
}
size_t dq_size = pass->draw_queues[dq].size;
bsp_draw_t *draw = &pass->draw_queues[dq].a[dq_size - 1];
if (!pass->draw_queues[dq].size
|| draw->tex_id != i
|| draw->inst_id != is.inst_id) {
bsp_instance_t *instance = &pass->instances[is.inst_id];
DARRAY_APPEND (&pass->draw_queues[dq], ((bsp_draw_t) {
.tex_id = i,
.inst_id = is.inst_id,
.instance_count = instance->entities.size,
.first_index = pass->index_count,
.first_instance = instance->first_instance,
}));
dq_size = pass->draw_queues[dq].size;
draw = &pass->draw_queues[dq].a[dq_size - 1];
}
memcpy (pass->indices + pass->index_count,
bctx->poly_indices + f.first_index,
f.index_count * sizeof (uint32_t));
draw->index_count += f.index_count;
pass->index_count += f.index_count;
}
}
bframe->index_count += pass->index_count;
}
static void
draw_queue (bsp_pass_t *pass, int queue, VkPipelineLayout layout,
qfv_device_t *device, VkCommandBuffer cmd)
{
qfv_devfuncs_t *dfunc = device->funcs;
for (size_t i = 0; i < pass->draw_queues[queue].size; i++) {
__auto_type d = pass->draw_queues[queue].a[i];
if (pass->textures) {
vulktex_t *tex = pass->textures->a[d.tex_id];
bind_texture (tex, TEX_SET, layout, dfunc, cmd);
}
dfunc->vkCmdDrawIndexed (cmd, d.index_count, d.instance_count,
d.first_index, 0, d.first_instance);
}
}
static int
ent_model_cmp (const void *_a, const void *_b)
{
const entity_t *a = _a;
const entity_t *b = _b;
renderer_t *ra = Ent_GetComponent (a->id, scene_renderer, a->reg);
renderer_t *rb = Ent_GetComponent (b->id, scene_renderer, b->reg);
return ra->model->render_id - rb->model->render_id;
}
void
Vulkan_DrawWorld (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
qfv_device_t *device = ctx->device;
//qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
bctx->main_pass.bsp_context = bctx;
bctx->main_pass.position = r_refdef.frame.position;
bctx->main_pass.vis_frame = r_visframecount;
bctx->main_pass.face_frames = r_face_visframes;
bctx->main_pass.leaf_frames = r_leaf_visframes;
bctx->main_pass.node_frames = r_node_visframes;
bctx->main_pass.entid_data = bframe->entid_data;
bctx->main_pass.entid_count = 0;
bctx->anim_index = r_data->realtime * 5;
clear_queues (bctx, &bctx->main_pass); // do this first for water and skys
bframe->index_count = 0;
entity_t worldent = nullentity;
int world_id = Vulkan_Scene_AddEntity (ctx, worldent);
bctx->main_pass.ent_frame = 0; // world is always frame 0
bctx->main_pass.inst_id = world_id;
bctx->main_pass.brush = &r_refdef.worldmodel->brush;
if (bctx->main_pass.instances) {
DARRAY_APPEND (&bctx->main_pass.instances[world_id].entities, world_id);
}
R_VisitWorldNodes (&bctx->main_pass, ctx);
if (!bctx->vertex_buffer) {
return;
}
if (r_drawentities) {
heapsort (r_ent_queue->ent_queues[mod_brush].a,
r_ent_queue->ent_queues[mod_brush].size,
sizeof (entity_t), ent_model_cmp);
for (size_t i = 0; i < r_ent_queue->ent_queues[mod_brush].size; i++) {
entity_t ent = r_ent_queue->ent_queues[mod_brush].a[i];
if (!R_DrawBrushModel (ent, &bctx->main_pass, ctx)) {
Sys_Printf ("Too many entities!\n");
break;
}
}
}
bframe->entid_count = bctx->main_pass.entid_count;
queue_faces (&bctx->main_pass, bctx, bframe);
bsp_begin (rFrame);
bsp_push_constants_t frag_constants = { .time = vr_data.realtime };
2021-12-17 06:51:33 +00:00
push_fragconst (&frag_constants, bctx->layout, device,
bframe->cmdSet.a[QFV_bspGBuffer]);
VkPipelineLayout layout = bctx->layout;
__auto_type pass = &bctx->main_pass;
pass->textures = 0;
draw_queue (pass, 0, layout, device, bframe->cmdSet.a[QFV_bspDepth]);
draw_queue (pass, 1, layout, device, bframe->cmdSet.a[QFV_bspDepth]);
pass->textures = &bctx->registered_textures;
draw_queue (pass, 0, layout, device, bframe->cmdSet.a[QFV_bspGBuffer]);
bsp_end (ctx);
}
void
Vulkan_Bsp_Flush (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
size_t atom = device->physDev->properties->limits.nonCoherentAtomSize;
size_t atom_mask = atom - 1;
size_t index_offset = bframe->index_offset;
size_t index_size = bframe->index_count * sizeof (uint32_t);
size_t entid_offset = bframe->entid_offset;
size_t entid_size = bframe->entid_count * sizeof (uint32_t);
if (!bframe->index_count) {
return;
}
index_offset &= ~atom_mask;
index_size = (index_size + atom_mask) & ~atom_mask;
entid_offset &= ~atom_mask;
entid_size = (entid_size + atom_mask) & ~atom_mask;
VkMappedMemoryRange ranges[] = {
{ VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, 0,
bctx->index_memory, index_offset, index_size
},
{ VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, 0,
bctx->entid_memory, entid_offset, entid_size
},
};
dfunc->vkFlushMappedMemoryRanges (device->dev, 2, ranges);
}
void
Vulkan_DrawWaterSurfaces (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
qfv_device_t *device = ctx->device;
//qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
if (!bctx->main_pass.draw_queues[3].size)
return;
turb_begin (rFrame);
VkPipelineLayout layout = bctx->layout;
bsp_push_constants_t frag_constants = {
.time = vr_data.realtime,
.alpha = 1,
.turb_scale = 0,
};
push_fragconst (&frag_constants, layout, device,
bframe->cmdSet.a[QFV_bspTurb]);
__auto_type pass = &bctx->main_pass;
pass->textures = &bctx->registered_textures;
draw_queue (pass, 2, layout, device, bframe->cmdSet.a[QFV_bspTurb]);
frag_constants.alpha = r_wateralpha;
frag_constants.turb_scale = 1;
push_fragconst (&frag_constants, bctx->layout, device,
bframe->cmdSet.a[QFV_bspTurb]);
draw_queue (pass, 3, layout, device, bframe->cmdSet.a[QFV_bspTurb]);
turb_end (ctx);
}
void
Vulkan_DrawSky (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
if (!bctx->main_pass.draw_queues[1].size)
return;
sky_begin (rFrame);
vulktex_t skybox = { .descriptor = bctx->skybox_descriptor };
bind_texture (&skybox, SKYBOX_SET, bctx->layout, dfunc,
bframe->cmdSet.a[QFV_bspSky]);
bsp_push_constants_t frag_constants = { .time = vr_data.realtime };
2021-12-17 06:51:33 +00:00
push_fragconst (&frag_constants, bctx->layout, device,
bframe->cmdSet.a[QFV_bspSky]);
VkPipelineLayout layout = bctx->layout;
__auto_type pass = &bctx->main_pass;
pass->textures = &bctx->registered_textures;
draw_queue (pass, 1, layout, device, bframe->cmdSet.a[QFV_bspSky]);
sky_end (ctx);
}
static void
create_default_skys (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
VkImage skybox;
VkImage skysheet;
VkDeviceMemory memory;
VkImageView boxview;
VkImageView sheetview;
bctx->default_skybox = calloc (2, sizeof (qfv_tex_t));
bctx->default_skysheet = bctx->default_skybox + 1;
VkExtent3D extents = { 1, 1, 1 };
skybox = QFV_CreateImage (device, 1, VK_IMAGE_TYPE_2D,
VK_FORMAT_B8G8R8A8_UNORM, extents, 1, 1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_USAGE_SAMPLED_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE, skybox,
"bsp:image:default_skybox");
skysheet = QFV_CreateImage (device, 0, VK_IMAGE_TYPE_2D,
VK_FORMAT_B8G8R8A8_UNORM, extents, 1, 2,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_USAGE_SAMPLED_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE, skysheet,
"bsp:image:default_skysheet");
VkMemoryRequirements requirements;
dfunc->vkGetImageMemoryRequirements (device->dev, skybox, &requirements);
size_t boxsize = requirements.size;
dfunc->vkGetImageMemoryRequirements (device->dev, skysheet, &requirements);
size_t sheetsize = requirements.size;
memory = QFV_AllocImageMemory (device, skybox,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
boxsize + sheetsize,
VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, memory,
"bsp:memory:default_skys");
QFV_BindImageMemory (device, skybox, memory, 0);
QFV_BindImageMemory (device, skysheet, memory, boxsize);
boxview = QFV_CreateImageView (device, skybox, VK_IMAGE_VIEW_TYPE_CUBE,
VK_FORMAT_B8G8R8A8_UNORM,
VK_IMAGE_ASPECT_COLOR_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, boxview,
"bsp:iview:default_skybox");
sheetview = QFV_CreateImageView (device, skysheet,
VK_IMAGE_VIEW_TYPE_2D_ARRAY,
VK_FORMAT_B8G8R8A8_UNORM,
VK_IMAGE_ASPECT_COLOR_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, sheetview,
"bsp:iview:default_skysheet");
bctx->default_skybox->image = skybox;
bctx->default_skybox->view = boxview;
bctx->default_skybox->memory = memory;
bctx->default_skysheet->image = skysheet;
bctx->default_skysheet->view = sheetview;
// temporarily commandeer the light map's staging buffer
qfv_packet_t *packet = QFV_PacketAcquire (bctx->light_stage);
qfv_imagebarrier_t ib = imageBarriers[qfv_LT_Undefined_to_TransferDst];
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
VkImageMemoryBarrier barriers[2] = { ib.barrier, ib.barrier };
barriers[0].image = skybox;
barriers[1].image = skysheet;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0,
2, barriers);
VkClearColorValue color = {};
VkImageSubresourceRange range = {
VK_IMAGE_ASPECT_COLOR_BIT,
0, VK_REMAINING_MIP_LEVELS,
0, VK_REMAINING_ARRAY_LAYERS
};
dfunc->vkCmdClearColorImage (packet->cmd, skybox,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
&color, 1, &range);
dfunc->vkCmdClearColorImage (packet->cmd, skysheet,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
&color, 1, &range);
ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
barriers[0] = ib.barrier;
barriers[1] = ib.barrier;
barriers[0].image = skybox;
barriers[1].image = skysheet;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0,
2, barriers);
QFV_PacketSubmit (packet);
}
static void
create_notexture (vulkan_ctx_t *ctx)
{
const char *missing = "Missing";
byte data[2][64 * 64 * 4]; // 2 * 64x64 rgba (8x8 chars)
tex_t tex[2] = {
{ .width = 64,
.height = 64,
.format = tex_rgba,
.loaded = 1,
.data = data[0],
},
{ .width = 64,
.height = 64,
.format = tex_rgba,
.loaded = 1,
.data = data[1],
},
};
for (int i = 0; i < 64 * 64; i++) {
data[0][i * 4 + 0] = 0x20;
data[0][i * 4 + 1] = 0x20;
data[0][i * 4 + 2] = 0x20;
data[0][i * 4 + 3] = 0xff;
data[1][i * 4 + 0] = 0x00;
data[1][i * 4 + 1] = 0x00;
data[1][i * 4 + 2] = 0x00;
data[1][i * 4 + 3] = 0xff;
}
int x = 4;
int y = 4;
for (const char *c = missing; *c; c++) {
byte *bitmap = font8x8_data + *c * 8;
for (int l = 0; l < 8; l++) {
byte d = *bitmap++;
for (int b = 0; b < 8; b++) {
if (d & 0x80) {
int base = ((y + l) * 64 + x + b) * 4;
data[0][base + 0] = 0x00;
data[0][base + 1] = 0x00;
data[0][base + 2] = 0x00;
data[0][base + 3] = 0xff;
data[1][base + 0] = 0xff;
data[1][base + 1] = 0x00;
data[1][base + 2] = 0xff;
data[1][base + 3] = 0xff;
}
d <<= 1;
}
}
x += 8;
}
for (int i = 1; i < 7; i++) {
y += 8;
memcpy (data[0] + y * 64 * 4, data[0] + 4 * 64 * 4, 8 * 64 * 4);
memcpy (data[1] + y * 64 * 4, data[1] + 4 * 64 * 4, 8 * 64 * 4);
}
bspctx_t *bctx = ctx->bsp_context;
bctx->notexture.tex = Vulkan_LoadTexArray (ctx, tex, 2, 1, "notexture");
}
static void
bsp_draw_queue (const exprval_t **params, exprval_t *result, exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto bctx = ctx->bsp_context;
int pass = *(int *) params[2]->value;
if (!pass && r_refdef.worldmodel) {
bctx->main_pass.bsp_context = bctx;
bctx->main_pass.position = r_refdef.frame.position;
bctx->main_pass.vis_frame = r_visframecount;
bctx->main_pass.face_frames = r_face_visframes;
bctx->main_pass.leaf_frames = r_leaf_visframes;
bctx->main_pass.node_frames = r_node_visframes;
//bctx->main_pass.entid_data = bframe->entid_data;
//bctx->main_pass.entid_count = 0;
clear_queues (bctx, &bctx->main_pass); // do this first for water and skys
entity_t worldent = nullentity;
int world_id = Vulkan_Scene_AddEntity (ctx, worldent);
bctx->main_pass.ent_frame = 0; // world is always frame 0
bctx->main_pass.inst_id = world_id;
bctx->main_pass.brush = &r_refdef.worldmodel->brush;
R_VisitWorldNodes (&bctx->main_pass, ctx);
}
}
static exprenum_t bsp_stage_enum;
static exprtype_t bsp_stage_type = {
.name = "bsp_stage",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &bsp_stage_enum,
};
static int bsp_stage_values[] = { 0, };
static exprsym_t bsp_stage_symbols[] = {
{"main", &bsp_stage_type, bsp_stage_values + 0},
{}
};
static exprtab_t bsp_stage_symtab = { .symbols = bsp_stage_symbols };
static exprenum_t bsp_stage_enum = {
&bsp_stage_type,
&bsp_stage_symtab,
};
static exprenum_t bsp_queue_enum;
static exprtype_t bsp_queue_type = {
.name = "bsp_queue",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &bsp_queue_enum,
};
static int bsp_queue_values[] = { 0, 1, 2, 3, };
static exprsym_t bsp_queue_symbols[] = {
{"solid", &bsp_queue_type, bsp_queue_values + 0},
{"sky", &bsp_queue_type, bsp_queue_values + 1},
{"translucent", &bsp_queue_type, bsp_queue_values + 2},
{"turbulent", &bsp_queue_type, bsp_queue_values + 3},
{}
};
static exprtab_t bsp_queue_symtab = { .symbols = bsp_queue_symbols };
static exprenum_t bsp_queue_enum = {
&bsp_queue_type,
&bsp_queue_symtab,
};
static exprtype_t *bsp_draw_queue_params[] = {
&cexpr_int,
&bsp_queue_type,
&bsp_stage_type,
};
static exprfunc_t bsp_draw_queue_func[] = {
{ 0, 3, bsp_draw_queue_params, bsp_draw_queue },
{}
};
static exprsym_t bsp_task_syms[] = {
{ "bsp_draw_queue", &cexpr_function, bsp_draw_queue_func },
{}
};
void
Vulkan_Bsp_Init (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
qfvPushDebug (ctx, "bsp init");
QFV_Render_AddTasks (ctx, bsp_task_syms);
bspctx_t *bctx = calloc (1, sizeof (bspctx_t));
ctx->bsp_context = bctx;
bctx->light_scrap = QFV_CreateScrap (device, "lightmap_atlas", 2048,
tex_frgba, ctx->staging);
size_t size = QFV_ScrapSize (bctx->light_scrap);
bctx->light_stage = QFV_CreateStagingBuffer (device, "lightmap", size,
ctx->cmdpool);
create_default_skys (ctx);
create_notexture (ctx);
DARRAY_INIT (&bctx->registered_textures, 64);
bctx->main_pass.num_queues = 4;//solid, sky, water, transparent
bctx->main_pass.draw_queues = malloc (bctx->main_pass.num_queues
* sizeof (bsp_drawset_t));
for (int i = 0; i < bctx->main_pass.num_queues; i++) {
DARRAY_INIT (&bctx->main_pass.draw_queues[i], 64);
}
auto rctx = ctx->render_context;
size_t frames = rctx->frames.size;
DARRAY_INIT (&bctx->frames, frames);
DARRAY_RESIZE (&bctx->frames, frames);
bctx->frames.grow = 0;
bctx->depth = Vulkan_CreateGraphicsPipeline (ctx, "bsp_depth");
bctx->gbuf = Vulkan_CreateGraphicsPipeline (ctx, "bsp_gbuf");
bctx->skybox = Vulkan_CreateGraphicsPipeline (ctx, "bsp_skybox");
bctx->skysheet = Vulkan_CreateGraphicsPipeline (ctx, "bsp_skysheet");
bctx->turb = Vulkan_CreateGraphicsPipeline (ctx, "bsp_turb");
bctx->layout = Vulkan_CreatePipelineLayout (ctx, "quakebsp_layout");
bctx->sampler = Vulkan_CreateSampler (ctx, "quakebsp_sampler");
size_t entid_count = Vulkan_Scene_MaxEntities (ctx);
size_t entid_size = entid_count * sizeof (uint32_t);
size_t atom = device->physDev->properties->limits.nonCoherentAtomSize;
size_t atom_mask = atom - 1;
entid_size = (entid_size + atom_mask) & ~atom_mask;
bctx->entid_buffer
= QFV_CreateBuffer (device, frames * entid_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, bctx->entid_buffer,
"buffer:bsp:entid");
bctx->entid_memory
= QFV_AllocBufferMemory (device, bctx->entid_buffer,
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
frames * entid_size, 0);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY,
bctx->entid_memory, "memory:bsp:entid");
QFV_BindBufferMemory (device,
bctx->entid_buffer, bctx->entid_memory, 0);
uint32_t *entid_data;
dfunc->vkMapMemory (device->dev, bctx->entid_memory, 0,
frames * entid_size, 0, (void **) &entid_data);
for (size_t i = 0; i < frames; i++) {
__auto_type bframe = &bctx->frames.a[i];
DARRAY_INIT (&bframe->cmdSet, QFV_bspNumPasses);
DARRAY_RESIZE (&bframe->cmdSet, QFV_bspNumPasses);
bframe->cmdSet.grow = 0;
QFV_AllocateCommandBuffers (device, ctx->cmdpool, 1, &bframe->cmdSet);
for (int j = 0; j < QFV_bspNumPasses; j++) {
QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER,
bframe->cmdSet.a[j],
va (ctx->va_ctx, "cmd:bsp:%zd:%s", i,
bsp_pass_names[j]));
}
bframe->entid_data = entid_data + i * entid_count;
bframe->entid_offset = i * entid_size;
}
bctx->skybox_descriptor
= Vulkan_CreateTextureDescriptor (ctx, bctx->default_skybox,
bctx->sampler);
bctx->notexture.descriptor
= Vulkan_CreateTextureDescriptor (ctx, bctx->notexture.tex,
bctx->sampler);
r_notexture_mip->render = &bctx->notexture;
qfvPopDebug (ctx);
}
void
Vulkan_Bsp_Shutdown (struct vulkan_ctx_s *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
for (size_t i = 0; i < bctx->frames.size; i++) {
__auto_type bframe = &bctx->frames.a[i];
free (bframe->cmdSet.a);
}
dfunc->vkDestroyPipeline (device->dev, bctx->depth, 0);
dfunc->vkDestroyPipeline (device->dev, bctx->gbuf, 0);
dfunc->vkDestroyPipeline (device->dev, bctx->skybox, 0);
dfunc->vkDestroyPipeline (device->dev, bctx->skysheet, 0);
dfunc->vkDestroyPipeline (device->dev, bctx->turb, 0);
DARRAY_CLEAR (&bctx->registered_textures);
for (int i = 0; i < bctx->main_pass.num_queues; i++) {
DARRAY_CLEAR (&bctx->main_pass.draw_queues[i]);
}
free (bctx->faces);
free (bctx->models);
free (bctx->main_pass.draw_queues);
for (int i = 0; i < bctx->num_models; i++) {
DARRAY_CLEAR (&bctx->main_pass.instances[i].entities);
}
free (bctx->main_pass.instances);
DARRAY_CLEAR (&bctx->frames);
QFV_DestroyStagingBuffer (bctx->light_stage);
QFV_DestroyScrap (bctx->light_scrap);
if (bctx->vertex_buffer) {
dfunc->vkDestroyBuffer (device->dev, bctx->vertex_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->vertex_memory, 0);
}
if (bctx->index_buffer) {
dfunc->vkDestroyBuffer (device->dev, bctx->index_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->index_memory, 0);
}
dfunc->vkDestroyBuffer (device->dev, bctx->entid_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->entid_memory, 0);
if (bctx->skybox_tex) {
Vulkan_UnloadTex (ctx, bctx->skybox_tex);
}
if (bctx->notexture.tex) {
Vulkan_UnloadTex (ctx, bctx->notexture.tex);
}
dfunc->vkDestroyImageView (device->dev, bctx->default_skysheet->view, 0);
dfunc->vkDestroyImage (device->dev, bctx->default_skysheet->image, 0);
dfunc->vkDestroyImageView (device->dev, bctx->default_skybox->view, 0);
dfunc->vkDestroyImage (device->dev, bctx->default_skybox->image, 0);
dfunc->vkFreeMemory (device->dev, bctx->default_skybox->memory, 0);
free (bctx->default_skybox);
}
void
Vulkan_LoadSkys (const char *sky, vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
const char *name;
int i;
tex_t *tex;
static const char *sky_suffix[] = { "ft", "bk", "up", "dn", "rt", "lf"};
if (bctx->skybox_tex) {
Vulkan_UnloadTex (ctx, bctx->skybox_tex);
Vulkan_FreeTexture (ctx, bctx->skybox_descriptor);
}
bctx->skybox_tex = 0;
if (!sky || !*sky) {
sky = r_skyname;
}
if (!*sky || !strcasecmp (sky, "none")) {
Sys_MaskPrintf (SYS_vulkan, "Skybox unloaded\n");
bctx->skybox_descriptor
= Vulkan_CreateTextureDescriptor (ctx, bctx->default_skybox,
bctx->sampler);
return;
}
name = va (ctx->va_ctx, "env/%s_map", sky);
tex = LoadImage (name, 1);
if (tex) {
bctx->skybox_tex = Vulkan_LoadEnvMap (ctx, tex, sky);
Sys_MaskPrintf (SYS_vulkan, "Loaded %s\n", name);
} else {
int failed = 0;
tex_t *sides[6] = { };
for (i = 0; i < 6; i++) {
name = va (ctx->va_ctx, "env/%s%s", sky, sky_suffix[i]);
tex = LoadImage (name, 1);
if (!tex) {
Sys_MaskPrintf (SYS_vulkan, "Couldn't load %s\n", name);
// also look in gfx/env, where Darkplaces looks for skies
name = va (ctx->va_ctx, "gfx/env/%s%s", sky, sky_suffix[i]);
tex = LoadImage (name, 1);
if (!tex) {
Sys_MaskPrintf (SYS_vulkan, "Couldn't load %s\n", name);
failed = 1;
continue;
}
}
//FIXME find a better way (also, assumes data and struct together)
sides[i] = malloc (ImageSize (tex, 1));
memcpy (sides[i], tex, ImageSize (tex, 1));
sides[i]->data = (byte *)(sides[i] + 1);
Sys_MaskPrintf (SYS_vulkan, "Loaded %s\n", name);
}
if (!failed) {
bctx->skybox_tex = Vulkan_LoadEnvSides (ctx, sides, sky);
}
for (i = 0; i < 6; i++) {
free (sides[i]);
}
}
if (bctx->skybox_tex) {
bctx->skybox_descriptor
= Vulkan_CreateTextureDescriptor (ctx, bctx->skybox_tex,
bctx->sampler);
Sys_MaskPrintf (SYS_vulkan, "Skybox %s loaded\n", sky);
}
}