quakeforge/libs/video/renderer/vulkan/vulkan_lighting.c

1800 lines
51 KiB
C
Raw Normal View History

/*
vulkan_lighting.c
Vulkan lighting pass pipeline
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/2/23
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/dstring.h"
#include "QF/heapsort.h"
#include "QF/plist.h"
#include "QF/progs.h"
#include "QF/script.h"
#include "QF/set.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/scene/scene.h"
#include "QF/ui/view.h"
#include "QF/Vulkan/qf_bsp.h"
#include "QF/Vulkan/qf_draw.h"
#include "QF/Vulkan/qf_lighting.h"
#include "QF/Vulkan/qf_matrices.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/descriptor.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/dsmanager.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/projection.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/resource.h"
#include "QF/Vulkan/staging.h"
#include "compat.h"
#include "r_internal.h"
#include "vid_vulkan.h"
#include "vkparse.h"
#define ico_verts 12
#define cone_verts 7
static int ico_inds[] = {
0, 4, 6, 9, 2, 8, 4, -1,
3, 1, 10, 5, 7, 11, 1, -1,
1, 11, 6, 4, 10, -1,
9, 6, 11, 7, 2, -1,
5, 10, 8, 2, 7, -1,
4, 8, 10,
};
#define num_ico_inds (sizeof (ico_inds) / sizeof (ico_inds[0]))
static int cone_inds[] = {
0, 1, 2, 3, 4, 5, 6, 1, -1,
1, 6, 5, 4, 3, 2,
};
#define num_cone_inds (sizeof (cone_inds) / sizeof (cone_inds[0]))
#define dynlight_max 32
static int dynlight_size;
static cvar_t dynlight_size_cvar = {
.name = "dynlight_size",
.description =
"Effective radius of dynamic light shadow maps. Needs map reload to "
"take effect",
.default_value = "250",
.flags = CVAR_NONE,
.value = { .type = &cexpr_int, .value = &dynlight_size },
};
#if 0
static const light_t *
get_light (entity_t ent)
{
return Ent_GetComponent (ent.id, scene_light, ent.reg);
}
#endif
static const dlight_t *
get_dynlight (entity_t ent)
{
return Ent_GetComponent (ent.id, scene_dynlight, ent.reg);
}
static bool
has_dynlight (entity_t ent)
{
return Ent_HasComponent (ent.id, scene_dynlight, ent.reg);
}
static uint32_t
get_lightstyle (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, scene_lightstyle, ent.reg);
}
static uint32_t
get_lightleaf (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, scene_lightleaf, ent.reg);
}
static uint32_t
get_lightid (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, scene_lightid, ent.reg);
}
static void
set_lightid (uint32_t ent, ecs_registry_t *reg, uint32_t id)
{
Ent_SetComponent (ent, scene_lightid, reg, &id);
}
static void
lighting_setup_aux (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
if (!lctx->ldata) {
return;
}
auto pass = Vulkan_Bsp_GetAuxPass (ctx);
auto brush = pass->brush;
set_t leafs = SET_STATIC_INIT (brush->modleafs, alloca);
set_empty (&leafs);
auto queue = r_ent_queue; //FIXME fetch from scene
for (size_t i = 0; i < queue->ent_queues[mod_light].size; i++) {
entity_t ent = queue->ent_queues[mod_light].a[i];
if (!has_dynlight (ent)) {
auto ls = get_lightstyle (ent);
if (!d_lightstylevalue[ls]) {
continue;
}
}
auto leafnum = get_lightleaf (ent);
if (leafnum != ~0u) {
set_add (&leafs, leafnum);
}
}
set_t pvs = SET_STATIC_INIT (brush->visleafs, alloca);
auto iter = set_first (&leafs);
if (!iter) {
return;
}
if (iter->element == 0) {
set_assign (&pvs, lctx->ldata->sun_pvs);
} else {
Mod_LeafPVS_set (brush->leafs + iter->element, brush, 0, &pvs);
}
for (iter = set_next (iter); iter; iter = set_next (iter)) {
Mod_LeafPVS_mix (brush->leafs + iter->element, brush, 0, &pvs);
}
visstate_t visstate = {
.node_visframes = pass->node_frames,
.leaf_visframes = pass->leaf_frames,
.face_visframes = pass->face_frames,
.visframecount = pass->vis_frame,
.brush = pass->brush,
};
R_MarkLeavesPVS (&visstate, &pvs);
pass->vis_frame = visstate.visframecount;
}
static VkImageView
create_view (vulkan_ctx_t *ctx, light_control_t *renderer)
{
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
VkImageViewCreateInfo cInfo = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = lctx->map_images[renderer->map_index],
.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = 1,
.baseArrayLayer = renderer->layer,
.layerCount = renderer->numLayers,
},
};
VkImageView view;
dfunc->vkCreateImageView (device->dev, &cInfo, 0, &view);
return view;
}
static VkFramebuffer
create_framebuffer (vulkan_ctx_t *ctx, light_control_t *renderer,
VkImageView view, VkRenderPass renderpass)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkFramebuffer framebuffer;
dfunc->vkCreateFramebuffer (device->dev,
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = renderpass,
.attachmentCount = 1,
.pAttachments = &view,
.width = renderer->size,
.height = renderer->size,
.layers = 1,
}, 0, &framebuffer);
return framebuffer;
}
static void
clear_frame_buffers_views (vulkan_ctx_t *ctx, lightingframe_t *lframe)
{
auto device = ctx->device;
auto dfunc = device->funcs;
for (size_t i = 0; i < lframe->framebuffers.size; i++) {
auto framebuffer = lframe->framebuffers.a[i];
dfunc->vkDestroyFramebuffer (device->dev, framebuffer, 0);
}
lframe->framebuffers.size = 0;
for (size_t i = 0; i < lframe->views.size; i++) {
auto view = lframe->views.a[i];
dfunc->vkDestroyImageView (device->dev, view, 0);
}
lframe->views.size = 0;
}
static void
lighting_draw_shadow_maps (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto shadow = QFV_GetStep (params[0], ctx->render_context->job);
auto render = shadow->render;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (!lctx->num_maps) {
return;
}
//auto pass = Vulkan_Bsp_GetAuxPass (ctx);
clear_frame_buffers_views (ctx, lframe);
auto queue = r_ent_queue; //FIXME fetch from scene
for (size_t i = 0; i < queue->ent_queues[mod_light].size; i++) {
entity_t ent = queue->ent_queues[mod_light].a[i];
uint32_t id = get_lightid (ent);
if (id >= lctx->light_control.size) {
continue;
}
auto r = &lctx->light_control.a[id];
if (!r->numLayers) {
continue;
}
if (!has_dynlight (ent)) {
auto ls = get_lightstyle (ent);
if (!d_lightstylevalue[ls]) {
continue;
}
}
auto renderpass = &render->renderpasses[r->renderpass_index];
auto view = create_view (ctx, r);
auto bi = &renderpass->beginInfo;
auto fbuffer = create_framebuffer (ctx, r, view, bi->renderPass);
bi->framebuffer = fbuffer;
QFV_RunRenderPass (ctx, renderpass, r->size, r->size, &r->matrix_id);
DARRAY_APPEND (&lframe->views, view);
DARRAY_APPEND (&lframe->framebuffers, fbuffer);
bi->framebuffer = 0;
}
}
static uint32_t
make_id (uint32_t matrix_index, uint32_t map_index, uint32_t layer,
uint32_t type)
{
if (type == ST_CUBE) {
layer /= 6;
}
return ((matrix_index & 0x1fff) << 0)
| ((map_index & 0x1f) << 13)
| ((layer & 0x7ff) << 18)
| ((type & 3) << 29);
}
static void
cube_mat (mat4f_t *mat, vec4f_t position)
{
mat4f_t view;
mat4fidentity (view);
view[3] = -position;
view[3][3] = 1;
mat4f_t proj;
QFV_PerspectiveTan (proj, 1, 1);
for (int j = 0; j < 6; j++) {
mat4f_t side_view;
mat4f_t rotinv;
mat4ftranspose (rotinv, qfv_box_rotations[j]);
mmulf (side_view, rotinv, view);
mmulf (side_view, qfv_z_up, side_view);
mmulf (mat[j], proj, side_view);
}
}
static void
lighting_update_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
memset (lframe->light_queue, 0, sizeof (lframe->light_queue));
if (!lctx->scene || !lctx->scene->lights) {
return;
}
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
auto packet = QFV_PacketAcquire (ctx->staging);
vec4f_t *styles = QFV_PacketExtend (packet, sizeof (vec4f_t[NumStyles]));
for (int i = 0; i < NumStyles; i++) {
styles[i] = (vec4f_t) { 1, 1, 1, d_lightstylevalue[i] / 65536.0};
}
QFV_PacketCopyBuffer (packet, lframe->style_buffer, 0, bb);
QFV_PacketSubmit (packet);
uint32_t light_ids[4][MaxLights];
uint32_t entids[4][MaxLights];
uint32_t light_count = 0;
auto queue = lframe->light_queue;
uint32_t dynamic_light_entities[MaxLights];
const dlight_t *dynamic_lights[MaxLights];
int ndlight = 0;
auto entqueue = r_ent_queue; //FIXME fetch from scene
for (size_t i = 0; i < entqueue->ent_queues[mod_light].size; i++) {
entity_t ent = entqueue->ent_queues[mod_light].a[i];
if (has_dynlight (ent)) {
dynamic_light_entities[ndlight] = ent.id;
dynamic_lights[ndlight] = get_dynlight (ent);
ndlight++;
continue;
}
auto ls = get_lightstyle (ent);
if (!d_lightstylevalue[ls]) {
continue;
}
light_count++;
uint32_t id = lctx->light_control.a[get_lightid (ent)].light_id;
int mode = lctx->light_control.a[get_lightid (ent)].mode;
light_ids[mode][queue[mode].count] = id;
entids[mode][queue[mode].count] = ent.id;
queue[mode].count++;
}
if (ndlight) {
light_count += ndlight;
packet = QFV_PacketAcquire (ctx->staging);
light_t *lights = QFV_PacketExtend (packet, sizeof (light_t[ndlight]));
for (int i = 0; i < ndlight; i++) {
uint32_t id = lctx->dynamic_base + i;
set_lightid (dynamic_light_entities[i], lctx->scene->reg, id);
light_ids[ST_CUBE][queue[ST_CUBE].count] = id;
entids[ST_CUBE][queue[ST_CUBE].count] = dynamic_light_entities[i];
queue[ST_CUBE].count++;
VectorCopy (dynamic_lights[i]->color, lights[i].color);
// dynamic lights seem a tad faint, so 16x map lights
lights[i].color[3] = dynamic_lights[i]->radius / 16;
VectorCopy (dynamic_lights[i]->origin, lights[i].position);
// dlights are local point sources
lights[i].position[3] = 1;
lights[i].attenuation =
(vec4f_t) { 0, 0, 1, 1/dynamic_lights[i]->radius };
// full sphere, normal light (not ambient)
lights[i].direction = (vec4f_t) { 0, 0, 1, 1 };
}
VkDeviceSize dlight_offset = sizeof (light_t[lctx->dynamic_base]);
QFV_PacketCopyBuffer (packet, lframe->light_buffer, dlight_offset, bb);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
uint32_t r_size = sizeof (qfv_light_render_t[ndlight]);
qfv_light_render_t *render = QFV_PacketExtend (packet, r_size);
for (int i = 0; i < ndlight; i++) {
auto r = &lctx->light_control.a[lctx->dynamic_base + i];
render[i] = (qfv_light_render_t) {
.id_data = make_id(r->matrix_id, r->map_index, r->layer,
r->mode),
};
render[i].id_data |= 0x80000000; // no style
}
dlight_offset = sizeof (qfv_light_render_t[lctx->dynamic_base]);
QFV_PacketCopyBuffer (packet, lframe->render_buffer, dlight_offset, bb);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
uint32_t msize = sizeof (mat4f_t[ndlight * 6]);
mat4f_t *mats = QFV_PacketExtend (packet, msize);
for (int i = 0; i < ndlight; i++) {
cube_mat (&mats[i * 6], dynamic_lights[i]->origin);
}
VkDeviceSize mat_offset = sizeof (mat4f_t[lctx->dynamic_matrix_base]);
QFV_PacketCopyBuffer (packet, lframe->shadowmat_buffer, mat_offset, bb);
QFV_PacketSubmit (packet);
}
if (developer & SYS_lighting) {
Vulkan_Draw_String (vid.width - 32, 8,
va (ctx->va_ctx, "%3d", light_count),
ctx);
}
if (light_count) {
for (int i = 1; i < 4; i++) {
queue[i].start = queue[i - 1].start + queue[i - 1].count;
}
packet = QFV_PacketAcquire (ctx->staging);
uint32_t *lids = QFV_PacketExtend (packet,
sizeof (uint32_t[light_count]));
for (int i = 0; i < 4; i++) {
memcpy (lids + queue[i].start, light_ids[i],
sizeof (uint32_t[queue[i].count]));
}
QFV_PacketCopyBuffer (packet, lframe->id_buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
uint32_t *eids = QFV_PacketExtend (packet,
sizeof (uint32_t[light_count]));
for (int i = 0; i < 4; i++) {
memcpy (eids + queue[i].start, entids[i],
sizeof (uint32_t[queue[i].count]));
}
QFV_PacketCopyBuffer (packet, lframe->entid_buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
}
}
static void
lighting_update_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto job = ctx->render_context->job;
auto step = QFV_GetStep (params[0], job);
auto render = step->render;
auto fb = &render->active->framebuffer;
VkDescriptorImageInfo attachInfo[] = {
{ .imageView = fb->views[QFV_attachColor],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachEmission],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachNormal],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachPosition],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
};
VkWriteDescriptorSet attachWrite[] = {
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[0], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[1], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 2,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[2], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 3,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[3], },
};
dfunc->vkUpdateDescriptorSets (device->dev,
LIGHTING_ATTACH_INFOS, attachWrite,
0, 0);
}
static void
lighting_bind_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
if (!lctx->num_maps) {
return;
}
auto cmd = taskctx->cmd;
auto layout = taskctx->pipeline->layout;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto shadow_type = *(int *) params[0]->value;
auto stage = *(int *) params[1]->value;
if (stage == lighting_debug) {
VkDescriptorSet sets[] = {
Vulkan_Matrix_Descriptors (ctx, ctx->curFrame),
lframe->lights_set,
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 2, sets, 0, 0);
VkBuffer buffers[] = {
lframe->id_buffer,
lctx->splat_verts,
};
VkDeviceSize offsets[] = { 0, 0 };
dfunc->vkCmdBindVertexBuffers (cmd, 0, 2, buffers, offsets);
dfunc->vkCmdBindIndexBuffer (cmd, lctx->splat_inds, 0,
VK_INDEX_TYPE_UINT32);
} else {
VkDescriptorSet sets[] = {
lframe->shadowmat_set,
lframe->lights_set,
lframe->attach_set,
(VkDescriptorSet[]) {
lctx->shadow_2d_set,
lctx->shadow_2d_set,
lctx->shadow_2d_set,
lctx->shadow_cube_set
}[shadow_type],
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 4, sets, 0, 0);
}
}
static void
lighting_draw_splats (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (lframe->light_queue[ST_CUBE].count) {
auto q = lframe->light_queue[ST_CUBE];
dfunc->vkCmdDrawIndexed (cmd, num_ico_inds, q.count, 0, 0, q.start);
}
if (lframe->light_queue[ST_PLANE].count) {
auto q = lframe->light_queue[ST_PLANE];
dfunc->vkCmdDrawIndexed (cmd, num_cone_inds, q.count,
num_ico_inds, 12, q.start);
}
}
static void
lighting_draw_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto layout = taskctx->pipeline->layout;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto shadow_type = *(int *) params[0]->value;
auto queue = lframe->light_queue[shadow_type];
if (!queue.count) {
return;
}
qfv_push_constants_t push_constants[] = {
{ VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof (queue), &queue },
};
QFV_PushConstants (device, cmd, layout, 1, push_constants);
dfunc->vkCmdDraw (cmd, 3, 1, 0, 0);
}
static exprenum_t lighting_stage_enum;
static exprtype_t lighting_stage_type = {
.name = "lighting_stage",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &lighting_stage_enum,
};
static int lighting_stage_values[] = {
lighting_main,
lighting_shadow,
lighting_debug,
};
static exprsym_t lighting_stage_symbols[] = {
{"main", &lighting_stage_type, lighting_stage_values + 0},
{"shadow", &lighting_stage_type, lighting_stage_values + 1},
{"debug", &lighting_stage_type, lighting_stage_values + 2},
{}
};
static exprtab_t lighting_stage_symtab = { .symbols = lighting_stage_symbols };
static exprenum_t lighting_stage_enum = {
&lighting_stage_type,
&lighting_stage_symtab,
};
static exprenum_t shadow_type_enum;
static exprtype_t shadow_type_type = {
.name = "shadow_type",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &shadow_type_enum,
};
static int shadow_type_values[] = { ST_NONE, ST_PLANE, ST_CASCADE, ST_CUBE };
static exprsym_t shadow_type_symbols[] = {
{"none", &shadow_type_type, shadow_type_values + 0},
{"plane", &shadow_type_type, shadow_type_values + 1},
{"cascade", &shadow_type_type, shadow_type_values + 2},
{"cube", &shadow_type_type, shadow_type_values + 3},
{}
};
static exprtab_t shadow_type_symtab = { .symbols = shadow_type_symbols };
static exprenum_t shadow_type_enum = {
&shadow_type_type,
&shadow_type_symtab,
};
static exprtype_t *shadow_type_param[] = {
&shadow_type_type,
&lighting_stage_type,
};
static exprtype_t *stepref_param[] = {
&cexpr_string,
};
static exprfunc_t lighting_update_lights_func[] = {
{ .func = lighting_update_lights },
{}
};
static exprfunc_t lighting_update_descriptors_func[] = {
{ .func = lighting_update_descriptors, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprfunc_t lighting_bind_descriptors_func[] = {
{ .func = lighting_bind_descriptors, .num_params = 2,
.param_types = shadow_type_param },
{}
};
static exprfunc_t lighting_draw_splats_func[] = {
{ .func = lighting_draw_splats },
{}
};
static exprfunc_t lighting_draw_lights_func[] = {
{ .func = lighting_draw_lights, .num_params = 2,
.param_types = shadow_type_param },
{}
};
static exprfunc_t lighting_setup_aux_func[] = {
{ .func = lighting_setup_aux },
{}
};
static exprfunc_t lighting_draw_shadow_maps_func[] = {
{ .func = lighting_draw_shadow_maps, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprsym_t lighting_task_syms[] = {
{ "lighting_update_lights", &cexpr_function, lighting_update_lights_func },
{ "lighting_update_descriptors", &cexpr_function,
lighting_update_descriptors_func },
{ "lighting_bind_descriptors", &cexpr_function,
lighting_bind_descriptors_func },
{ "lighting_draw_splats", &cexpr_function, lighting_draw_splats_func },
{ "lighting_draw_lights", &cexpr_function, lighting_draw_lights_func },
{ "lighting_setup_aux", &cexpr_function, lighting_setup_aux_func },
{ "lighting_draw_shadow_maps", &cexpr_function,
lighting_draw_shadow_maps_func },
{}
};
void
Vulkan_Lighting_Init (vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = calloc (1, sizeof (lightingctx_t));
ctx->lighting_context = lctx;
Cvar_Register (&dynlight_size_cvar, 0, 0);
QFV_Render_AddTasks (ctx, lighting_task_syms);
lctx->shadow_info = (qfv_attachmentinfo_t) {
.name = "$shadow",
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.samples = 1,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
qfv_attachmentinfo_t *attachments[] = {
&lctx->shadow_info,
};
QFV_Render_AddAttachments (ctx, 1, attachments);
}
static void
make_default_map (int size, VkImage default_map, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
auto packet = QFV_PacketAcquire (ctx->staging);
size_t imgsize = size * size * sizeof (uint32_t);
uint32_t *img = QFV_PacketExtend (packet, imgsize);
for (int i = 0; i < 64; i++) {
for (int j = 0; j < 64; j++) {
img[i * 64 + j] = ((j ^ i) & 1) ? 0x00ffffff : 0;
}
}
auto ib = imageBarriers[qfv_LT_Undefined_to_TransferDst];
ib.barrier.image = default_map;
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, 1, &ib.barrier);
VkBufferImageCopy copy_region[6];
for (int i = 0; i < 6; i++) {
copy_region[i] = (VkBufferImageCopy) {
.bufferOffset = packet->offset,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = {VK_IMAGE_ASPECT_DEPTH_BIT, 0, i, 1},
{0, 0, 0}, {size, size, 1},
};
}
dfunc->vkCmdCopyBufferToImage (packet->cmd, packet->stage->buffer,
default_map,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
6, copy_region);
ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
ib.barrier.image = default_map;
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, 1, &ib.barrier);
QFV_PacketSubmit (packet);
}
static void
make_ico (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[ico_verts]));
float p = (sqrt(5) + 1) / 2;
float a = sqrt (3) / p;
float b = a / p;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
float my = j & 1 ? a : -a;
float mz = j & 2 ? b : -b;
int vind = i * 4 + j;
int ix = i;
int iy = (i + 1) % 3;
int iz = (i + 2) % 3;
verts[vind][ix] = 0;
verts[vind][iy] = my;
verts[vind][iz] = mz;
}
}
}
static void
make_cone (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[cone_verts]));
float a = 2 / sqrt (3);
float b = 1 / sqrt (3);
VectorSet ( 0, 0, 0, verts[0]);
VectorSet ( a, 0, -1, verts[1]);
VectorSet ( b, 1, -1, verts[2]);
VectorSet (-b, 1, -1, verts[3]);
VectorSet (-a, 0, -1, verts[4]);
VectorSet (-b, -1, -1, verts[5]);
VectorSet ( b, -1, -1, verts[6]);
}
static void
write_inds (qfv_packet_t *packet)
{
uint32_t *inds = QFV_PacketExtend (packet, sizeof (ico_inds)
+ sizeof (cone_inds));
memcpy (inds, ico_inds, sizeof (ico_inds));
inds += num_ico_inds;
memcpy (inds, cone_inds, sizeof (cone_inds));
}
void
Vulkan_Lighting_Setup (vulkan_ctx_t *ctx)
{
qfvPushDebug (ctx, "lighting init");
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
lctx->sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
Vulkan_Script_SetOutput (ctx,
&(qfv_output_t) { .format = VK_FORMAT_X8_D24_UNORM_PACK32 });
#if 0
plitem_t *rp_def = lctx->qfv_renderpass->renderpassDef;
plitem_t *rp_cfg = PL_ObjectForKey (rp_def, "renderpass_6");
lctx->renderpass_6 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
rp_cfg = PL_ObjectForKey (rp_def, "renderpass_4");
lctx->renderpass_4 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
rp_cfg = PL_ObjectForKey (rp_def, "renderpass_1");
lctx->renderpass_1 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
#endif
DARRAY_INIT (&lctx->light_mats, 16);
DARRAY_INIT (&lctx->light_control, 16);
auto rctx = ctx->render_context;
size_t frames = rctx->frames.size;
DARRAY_INIT (&lctx->frames, frames);
DARRAY_RESIZE (&lctx->frames, frames);
lctx->frames.grow = 0;
lctx->light_resources = malloc (sizeof (qfv_resource_t)
// splat vertices
+ sizeof (qfv_resobj_t)
// splat indices
+ sizeof (qfv_resobj_t)
// default shadow map and views
+ 3 * sizeof (qfv_resobj_t)
// light entids
+ sizeof (qfv_resobj_t[frames])
// light ids
+ sizeof (qfv_resobj_t[frames])
// light data
+ sizeof (qfv_resobj_t[frames])
// light render
+ sizeof (qfv_resobj_t[frames])
// light styles
+ sizeof (qfv_resobj_t[frames])
// light matrices
+ sizeof (qfv_resobj_t[frames]));
lctx->light_resources[0] = (qfv_resource_t) {
.name = "lights",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 + 3 + 6 * frames,
.objects = (qfv_resobj_t *) &lctx->light_resources[1],
};
auto splat_verts = lctx->light_resources->objects;
auto splat_inds = &splat_verts[1];
auto default_map = &splat_inds[1];
auto default_view_cube = &default_map[1];
auto default_view_2d = &default_view_cube[1];
auto light_entids = &default_view_2d[1];
auto light_ids = &light_entids[frames];
auto light_data = &light_ids[frames];
auto light_render = &light_data[frames];
auto light_styles = &light_render[frames];
auto light_mats = &light_styles[frames];
splat_verts[0] = (qfv_resobj_t) {
.name = "splat:vertices",
.type = qfv_res_buffer,
.buffer = {
.size = (20 + 7) * sizeof (vec3_t),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
},
};
splat_inds[0] = (qfv_resobj_t) {
.name = "splat:indices",
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (ico_inds) + sizeof (cone_inds),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
},
};
default_map[0] = (qfv_resobj_t) {
.name = "default_map",
.type = qfv_res_image,
.image = {
.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.extent = { 64, 64, 1 },
.num_mipmaps = 1,
.num_layers = 6,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
default_view_cube[0] = (qfv_resobj_t) {
.name = "default_map:view_cube",
.type = qfv_res_image_view,
.image_view = {
.image = default_map - lctx->light_resources->objects,
.type = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
default_view_2d[0] = (qfv_resobj_t) {
.name = "default_map:view_2d",
.type = qfv_res_image_view,
.image_view = {
.image = default_map - lctx->light_resources->objects,
.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
for (size_t i = 0; i < frames; i++) {
light_entids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "entids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_ids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "ids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_data[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "lights:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (light_t[MaxLights]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_render[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "render:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (qfv_light_render_t[MaxLights]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_styles[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "styles:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (vec4f_t[NumStyles]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_mats[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "matrices:%zd", i),
.type = qfv_res_buffer,
.buffer = {
// never need more than 6 matrices per light
.size = sizeof (mat4f_t[MaxLights * 6]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
}
QFV_CreateResource (device, lctx->light_resources);
lctx->splat_verts = splat_verts[0].buffer.buffer;
lctx->splat_inds = splat_inds[0].buffer.buffer;
lctx->default_map = default_map[0].image.image;
lctx->default_view_cube = default_view_cube[0].image_view.view;
lctx->default_view_2d = default_view_2d[0].image_view.view;
auto shadow_mgr = QFV_Render_DSManager (ctx, "lighting_shadow");
lctx->shadow_cube_set = QFV_DSManager_AllocSet (shadow_mgr);
lctx->shadow_2d_set = QFV_DSManager_AllocSet (shadow_mgr);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lctx->shadow_cube_set, "lighting:shadow_cube_set");
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lctx->shadow_2d_set, "lighting:shadow_2d_set");
lctx->shadow_sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
auto attach_mgr = QFV_Render_DSManager (ctx, "lighting_attach");
auto lights_mgr = QFV_Render_DSManager (ctx, "lighting_lights");
auto shadowmat_mgr = QFV_Render_DSManager (ctx, "shadowmat_set");
for (size_t i = 0; i < frames; i++) {
auto lframe = &lctx->frames.a[i];
*lframe = (lightingframe_t) {
.shadowmat_set = QFV_DSManager_AllocSet (shadowmat_mgr),
.lights_set = QFV_DSManager_AllocSet (lights_mgr),
.attach_set = QFV_DSManager_AllocSet (attach_mgr),
.shadowmat_buffer = light_mats[i].buffer.buffer,
.light_buffer = light_data[i].buffer.buffer,
.render_buffer = light_render[i].buffer.buffer,
.style_buffer = light_styles[i].buffer.buffer,
.id_buffer = light_ids[i].buffer.buffer,
.entid_buffer = light_entids[i].buffer.buffer,
};
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->attach_set,
va (ctx->va_ctx, "lighting:attach_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->lights_set,
va (ctx->va_ctx, "lighting:lights_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->shadowmat_set,
va (ctx->va_ctx, "lighting:shadowmat_set:%zd", i));
lframe->views = (qfv_imageviewset_t) DARRAY_STATIC_INIT (16);
lframe->framebuffers = (qfv_framebufferset_t) DARRAY_STATIC_INIT (16);
VkDescriptorBufferInfo bufferInfo[] = {
{ .buffer = lframe->shadowmat_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->id_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->light_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->render_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->style_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->entid_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
};
VkWriteDescriptorSet bufferWrite[] = {
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->shadowmat_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[0], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[1], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[2], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 2,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[3], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 3,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[4], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 4,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[5], },
};
dfunc->vkUpdateDescriptorSets (device->dev, 6, bufferWrite, 0, 0);
}
make_default_map (64, lctx->default_map, ctx);
auto packet = QFV_PacketAcquire (ctx->staging);
make_ico (packet);
make_cone (packet);
QFV_PacketCopyBuffer (packet, splat_verts[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
write_inds (packet);
QFV_PacketCopyBuffer (packet, splat_inds[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
qfvPopDebug (ctx);
}
static void
clear_shadows (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
lightingctx_t *lctx = ctx->lighting_context;
if (lctx->shadow_resources) {
QFV_DestroyResource (device, lctx->shadow_resources);
free (lctx->shadow_resources);
lctx->shadow_resources = 0;
}
free (lctx->map_images);
free (lctx->map_views);
free (lctx->map_cube);
lctx->map_images = 0;
lctx->map_views = 0;
lctx->map_cube = 0;
lctx->num_maps = 0;
lctx->light_control.size = 0;
}
void
Vulkan_Lighting_Shutdown (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
lightingctx_t *lctx = ctx->lighting_context;
clear_shadows (ctx);
QFV_DestroyResource (device, lctx->light_resources);
free (lctx->light_resources);
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
clear_frame_buffers_views (ctx, lframe);
DARRAY_CLEAR (&lframe->views);
DARRAY_CLEAR (&lframe->framebuffers);
}
DARRAY_CLEAR (&lctx->light_mats);
DARRAY_CLEAR (&lctx->light_control);
free (lctx->map_images);
free (lctx->map_views);
free (lctx->map_cube);
free (lctx->frames.a);
free (lctx);
}
static vec4f_t ref_direction = { 1, 0, 0, 0 };
static void
create_light_matrices (lightingctx_t *lctx)
{
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[scene_light];
auto light_data = (light_t *) light_pool->data;
uint16_t mat_count = 0;
for (uint32_t i = 0; i < light_pool->count; i++) {
entity_t ent = { .reg = reg, .id = light_pool->dense[i] };
uint32_t id = get_lightid (ent);
auto r = &lctx->light_control.a[id];
r->matrix_id = mat_count;
mat_count += r->numLayers;
}
DARRAY_RESIZE (&lctx->light_mats, mat_count);
lctx->dynamic_matrix_base = mat_count;
for (uint32_t i = 0; i < dynlight_max; i++) {
auto r = &lctx->light_control.a[lctx->dynamic_base + i];
r->matrix_id = lctx->dynamic_matrix_base + i * 6;
}
for (uint32_t i = 0; i < light_pool->count; i++) {
light_t *light = &light_data[i];
entity_t ent = { .reg = reg, .id = light_pool->dense[i] };
uint32_t id = get_lightid (ent);
auto r = &lctx->light_control.a[id];
auto lm = &lctx->light_mats.a[r->matrix_id];
mat4f_t view;
mat4f_t proj;
switch (r->mode) {
default:
case ST_NONE:
continue;
case ST_CUBE:
mat4fidentity (view);
break;
case ST_CASCADE:
case ST_PLANE:
//FIXME will fail for -ref_direction
vec4f_t dir = light->direction;
dir[3] = 0;
mat4fquat (view, qrotf (dir, ref_direction));
break;
}
vec4f_t pos = -light->position;
pos[3] = 1;
view[3] = mvmulf (view, pos);
switch (r->mode) {
case ST_NONE:
continue;
case ST_CUBE:
QFV_PerspectiveTan (proj, 1, 1);
for (int j = 0; j < 6; j++) {
mat4f_t side_view;
mat4f_t rotinv;
mat4ftranspose (rotinv, qfv_box_rotations[j]);
mmulf (side_view, rotinv, view);
mmulf (side_view, qfv_z_up, side_view);
mmulf (lm[j], proj, side_view);
}
break;
case ST_CASCADE:
// dependent on view fustrum and cascade level
mat4fidentity (proj);
mmulf (view, qfv_z_up, view);
for (int j = 0; j < 4; j++) {
mmulf (lm[j], proj, view);
}
break;
case ST_PLANE:
QFV_PerspectiveCos (proj, -light->direction[3]);
mmulf (view, qfv_z_up, view);
mmulf (lm[0], proj, view);
break;
}
}
}
static void
upload_light_matrices (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto packet = QFV_PacketAcquire (ctx->staging);
size_t mat_size = sizeof (mat4f_t[lctx->light_mats.size]);
void *mat_data = QFV_PacketExtend (packet, mat_size);
memcpy (mat_data, lctx->light_mats.a, mat_size);
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->shadowmat_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
}
static void
upload_light_data (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[scene_light];
auto lights = (light_t *) light_pool->data;
uint32_t count = light_pool->count;
auto packet = QFV_PacketAcquire (ctx->staging);
auto light_data = QFV_PacketExtend (packet, sizeof (light_t[count]));
memcpy (light_data, lights, sizeof (light_t[count]));
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->light_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
uint32_t r_size = sizeof (qfv_light_render_t[count]);
qfv_light_render_t *render = QFV_PacketExtend (packet, r_size);
for (uint32_t i = 0; i < count; i++) {
entity_t ent = { .reg = reg, .id = light_pool->dense[i] };
uint32_t id = get_lightid (ent);
if (id >= lctx->light_control.size) {
continue;
}
auto r = &lctx->light_control.a[id];
render[i] = (qfv_light_render_t) {
.id_data = make_id(r->matrix_id, r->map_index, r->layer, r->mode),
.style = get_lightstyle (ent),
};
}
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->render_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
}
static int
light_shadow_type (const light_t *light)
{
if (!light->position[3]) {
if (!VectorIsZero (light->direction)) {
return ST_CASCADE;
}
} else {
if (light->direction[3] > -0.5) {
return ST_CUBE;
} else {
return ST_PLANE;
}
}
return ST_NONE;
}
static int
light_compare (const void *_li2, const void *_li1, void *_lights)
{
const int *li1 = _li1;
const int *li2 = _li2;
const light_t *lights = _lights;
const light_t *l1 = &lights[*li1];
const light_t *l2 = &lights[*li2];
int s1 = abs ((int) l1->color[3]);
int s2 = abs ((int) l2->color[3]);
if (s1 == s2) {
if (l1->position[3] == l2->position[3]) {
return (l2->direction[3] > -0.5) - (l1->direction[3] > -0.5);
}
return l2->position[3] - l1->position[3];
}
return s1 - s2;
}
typedef struct {
int size;
int layers;
int cube;
} mapdesc_t;
typedef struct {
mapdesc_t *maps;
int numMaps;
int numLights;
const light_t *lights;
int *imageMap;
const int *lightMap;
light_control_t *control;
int maxLayers;
} mapctx_t;
static int
allocate_map (mapctx_t *mctx, int type, int (*getsize) (const light_t *light))
{
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int layers = ((int[4]) { 0, 1, 4, 6 })[type];
int cube = type == ST_CUBE;
for (int i = 0; i < mctx->numLights; i++) {
auto li = mctx->lightMap[i];
auto lr = &mctx->control[li];
if (lr->mode != type) {
continue;
}
int light_size = getsize (&mctx->lights[li]);
if (size != light_size || numLayers + layers > mctx->maxLayers) {
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
numLayers = 0;
}
size = light_size;
}
mctx->imageMap[li] = mctx->numMaps;
lr->size = size;
lr->layer = numLayers;
lr->numLayers = layers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
}
return totalLayers;
}
static int
allocate_dynlight_map (mapctx_t *mctx)
{
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int layers = 6;
int cube = 1;
for (int i = 0; i < dynlight_max; i++) {
if (size != dynlight_size || numLayers + layers > mctx->maxLayers) {
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
numLayers = 0;
}
size = dynlight_size;
}
auto li = mctx->numLights + i;
auto lr = &mctx->control[li];
*lr = (light_control_t) {
.renderpass_index = 2,
.map_index = mctx->numMaps,
.size = size,
.layer = numLayers,
.numLayers = layers,
.mode = ST_CUBE,
.light_id = li,
};
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
}
return totalLayers;
}
static int
get_point_size (const light_t *light)
{
return abs ((int) light->color[3]);
}
static int
get_spot_size (const light_t *light)
{
float c = light->direction[3];
float s = sqrt (1 - c * c);
return abs ((int) (s * light->color[3]));
}
static int
get_direct_size (const light_t *light)
{
return 1024;
}
static void
build_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_physdev_t *physDev = device->physDev;
int maxLayers = physDev->properties->limits.maxImageArrayLayers;
if (maxLayers > 2048) {
maxLayers = 2048;
}
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[scene_light];
auto lights = (light_t *) light_pool->data;
int numLights = light_pool->count;
int totalLayers = 0;
int imageMap[numLights];
int lightMap[numLights];
mapdesc_t maps[numLights];
for (int i = 0; i < numLights; i++) {
lightMap[i] = i;
}
heapsort_r (lightMap, numLights, sizeof (int), light_compare, lights);
DARRAY_RESIZE (&lctx->light_control, numLights + dynlight_max);
for (int i = 0; i < numLights; i++) {
auto li = lightMap[i];
auto lr = &lctx->light_control.a[li];
*lr = (light_control_t) {
.mode = light_shadow_type (&lights[li]),
.light_id = li,
};
set_lightid (light_pool->dense[li], reg, li);
// assume all lights have no shadows
imageMap[li] = -1;
}
mapctx_t mctx = {
.maps = maps,
.numLights = numLights,
.lights = lights,
.imageMap = imageMap,
.lightMap = lightMap,
.control = lctx->light_control.a,
.maxLayers = maxLayers,
};
totalLayers += allocate_map (&mctx, ST_CUBE, get_point_size);
totalLayers += allocate_map (&mctx, ST_PLANE, get_spot_size);
totalLayers += allocate_map (&mctx, ST_CASCADE, get_direct_size);
totalLayers += allocate_dynlight_map (&mctx);
lctx->num_maps = mctx.numMaps;
if (mctx.numMaps) {
qfv_resource_t *shad = calloc (1, sizeof (qfv_resource_t)
+ sizeof (qfv_resobj_t[mctx.numMaps])
+ sizeof (qfv_resobj_t[mctx.numMaps]));
lctx->shadow_resources = shad;
*shad = (qfv_resource_t) {
.name = "shadow",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 * mctx.numMaps,
.objects = (qfv_resobj_t *) &shad[1],
};
lctx->map_images = malloc (sizeof (VkImage[mctx.numMaps]));
lctx->map_views = malloc (sizeof (VkImageView[mctx.numMaps]));
lctx->map_cube = malloc (sizeof (bool[mctx.numMaps]));
auto images = shad->objects;
auto views = &images[mctx.numMaps];
for (int i = 0; i < mctx.numMaps; i++) {
int cube = maps[i].cube;
lctx->map_cube[i] = cube;
images[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "map:image:%d:%d", i, maps[i].size),
.type = qfv_res_image,
.image = {
.flags = cube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.extent = { maps[i].size, maps[i].size, 1 },
.num_mipmaps = 1,
.num_layers = maps[i].layers,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
views[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "map:view:%d:%d", i, maps[i].size),
.type = qfv_res_image_view,
.image_view = {
.image = i,
.type = cube ? VK_IMAGE_VIEW_TYPE_CUBE_ARRAY
: VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
}
QFV_CreateResource (device, shad);
for (int i = 0; i < mctx.numMaps; i++) {
lctx->map_images[i] = images[i].image.image;
lctx->map_views[i] = views[i].image_view.view;
}
}
for (int i = 0; i < numLights; i++) {
int li = lightMap[i];
auto lr = &lctx->light_control.a[li];
if (imageMap[li] == -1) {
continue;
}
switch (lr->numLayers) {
case 6:
lr->renderpass_index = 2;
break;
case 4:
lr->renderpass_index = 1;
break;
case 1:
lr->renderpass_index = 0;
break;
default:
Sys_Error ("build_shadow_maps: invalid light layer count: %u",
lr->numLayers);
}
lr->map_index = imageMap[li];
}
Sys_MaskPrintf (SYS_lighting,
"shadow maps: %d layers in %d images: %"PRId64"\n",
totalLayers, lctx->num_maps,
lctx->shadow_resources ? lctx->shadow_resources->size
: (VkDeviceSize) 0);
}
static void
transition_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkCommandBufferAllocateInfo aInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = ctx->cmdpool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
VkCommandBuffer cmd;
dfunc->vkAllocateCommandBuffers (device->dev, &aInfo, &cmd);
VkCommandBufferBeginInfo bInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
dfunc->vkBeginCommandBuffer (cmd, &bInfo);
auto ib = imageBarriers[qfv_LT_Undefined_to_ShaderReadOnly];
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
VkImageMemoryBarrier barriers[lctx->num_maps];
for (int i = 0; i < lctx->num_maps; i++) {
barriers[i] = ib.barrier;
barriers[i].image = lctx->map_images[i];
}
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, lctx->num_maps, barriers);
dfunc->vkEndCommandBuffer (cmd);
VkSubmitInfo submitInfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
};
dfunc->vkQueueSubmit (device->queue.queue, 1, &submitInfo, 0);
}
static void
update_shadow_descriptors (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkDescriptorImageInfo imageInfoCube[32];
VkDescriptorImageInfo imageInfo2d[32];
for (int i = 0; i < 32; i++) {
VkImageView viewCube = lctx->default_view_cube;
VkImageView view2d = lctx->default_view_2d;
if (i < lctx->num_maps) {
if (lctx->map_cube[i]) {
viewCube = lctx->map_views[i];
} else {
view2d = lctx->map_views[i];
}
}
imageInfoCube[i] = (VkDescriptorImageInfo) {
.sampler = lctx->shadow_sampler,
.imageView = viewCube,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
imageInfo2d[i] = (VkDescriptorImageInfo) {
.sampler = lctx->shadow_sampler,
.imageView = view2d,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
}
VkWriteDescriptorSet imageWrite[2] = {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lctx->shadow_cube_set,
.dstBinding = 0,
.descriptorCount = 32,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = imageInfoCube,
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lctx->shadow_2d_set,
.dstBinding = 0,
.descriptorCount = 32,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = imageInfo2d,
},
};
dfunc->vkUpdateDescriptorSets (device->dev, 2, imageWrite, 0, 0);
}
void
Vulkan_LoadLights (scene_t *scene, vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = ctx->lighting_context;
lctx->scene = scene;
clear_shadows (ctx);
lctx->ldata = 0;
if (lctx->scene) {
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[scene_light];
if (light_pool->count) {
lctx->dynamic_base = light_pool->count;
lctx->dynamic_count = 0;
build_shadow_maps (lctx, ctx);
transition_shadow_maps (lctx, ctx);
update_shadow_descriptors (lctx, ctx);
create_light_matrices (lctx);
upload_light_matrices (lctx, ctx);
upload_light_data (lctx, ctx);
}
lctx->ldata = scene->lights;
}
}
VkDescriptorSet
Vulkan_Lighting_Descriptors (vulkan_ctx_t *ctx, int frame)
{
auto lctx = ctx->lighting_context;
return lctx->frames.a[frame].shadowmat_set;
}