quakeforge/libs/video/renderer/vulkan/vulkan_lighting.c

1019 lines
28 KiB
C
Raw Normal View History

/*
vulkan_lighting.c
Vulkan lighting pass pipeline
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/2/23
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/dstring.h"
#include "QF/heapsort.h"
#include "QF/plist.h"
#include "QF/progs.h"
#include "QF/script.h"
#include "QF/set.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/scene/scene.h"
#include "QF/ui/view.h"
#include "QF/Vulkan/qf_draw.h"
#include "QF/Vulkan/qf_lighting.h"
#include "QF/Vulkan/qf_matrices.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/descriptor.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/dsmanager.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/projection.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/resource.h"
#include "QF/Vulkan/staging.h"
#include "compat.h"
#include "r_internal.h"
#include "vid_vulkan.h"
#include "vkparse.h"
#define ico_verts 12
#define cone_verts 7
static int ico_inds[] = {
0, 4, 6, 9, 2, 8, 4, -1,
3, 1, 10, 5, 7, 11, 1, -1,
1, 11, 6, 4, 10, -1,
9, 6, 11, 7, 2, -1,
5, 10, 8, 2, 7, -1,
4, 8, 10,
};
#define num_ico_inds (sizeof (ico_inds) / sizeof (ico_inds[0]))
static int cone_inds[] = {
0, 1, 2, 3, 4, 5, 6, 1, -1,
1, 6, 5, 4, 3, 2,
};
#define num_cone_inds (sizeof (cone_inds) / sizeof (cone_inds[0]))
#if 0
static void
lighting_draw_maps (qfv_orenderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
if (rFrame->subpassCmdSets[0].size) {
__auto_type sets = &rFrame->subpassCmdSets[0];
dfunc->vkFreeCommandBuffers (device->dev, lctx->cmdpool,
sets->size, sets->a);
sets->size = 0;
}
if (!lctx->ldata || !lctx->ldata->lights.size) {
return;
}
if (!lctx->light_renderers.a[0].renderPass) {
//FIXME goes away when lighting implemented properly
return;
}
__auto_type bufferset = QFV_AllocCommandBufferSet (1, alloca);
QFV_AllocateCommandBuffers (device, lctx->cmdpool, 0, bufferset);
VkCommandBuffer cmd = bufferset->a[0];
QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER,
cmd, va (ctx->va_ctx, "lighting:%d", ctx->curFrame));
VkCommandBufferBeginInfo beginInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
__auto_type rp = rFrame->renderpass;
QFV_CmdBeginLabel (device, cmd, rp->name, rp->color);
__auto_type lr = &lctx->light_renderers.a[0];
VkRenderPassBeginInfo renderPassInfo = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderArea = { {0, 0}, {lr->size, lr->size} },
.framebuffer = lr->framebuffer,
.renderPass = lr->renderPass,
.pClearValues = lctx->qfv_renderpass->clearValues->a,
};
__auto_type subpassContents = VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS;
if (renderPassInfo.renderPass) {
dfunc->vkCmdBeginRenderPass (cmd, &renderPassInfo, subpassContents);
//...
dfunc->vkCmdEndRenderPass (cmd);
}
QFV_CmdEndLabel (device, cmd);
dfunc->vkEndCommandBuffer (cmd);
DARRAY_APPEND (&rFrame->subpassCmdSets[0], cmd);
}
void
Vulkan_Lighting_CreateRenderPasses (vulkan_ctx_t *ctx)
{
// extents are dynamic and filled in for each light
// frame buffers are highly dynamic
__auto_type rp = QFV_RenderPass_New (ctx, "shadow", lighting_draw_maps);
QFV_RenderPass_CreateRenderPass (rp);
rp->primary_commands = 1;
rp->order = QFV_rp_shadowmap;
DARRAY_APPEND (&ctx->renderPasses, rp);
lctx->qfv_renderpass = rp;
}
#endif
static void
lighting_update_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
lframe->ico_count = 0;
lframe->cone_count = 0;
lframe->flat_count = 0;
if (!lctx->scene || !lctx->scene->lights) {
return;
}
lightingdata_t *ldata = lctx->ldata;
Light_FindVisibleLights (ldata);
dlight_t *lights[MaxLights];
auto packet = QFV_PacketAcquire (ctx->staging);
qfv_light_buffer_t *light_data = QFV_PacketExtend (packet,
sizeof (*light_data));
float style_intensities[NumStyles];
for (int i = 0; i < NumStyles; i++) {
style_intensities[i] = d_lightstylevalue[i] / 65536.0;
}
uint32_t ico_ids[MaxLights];
uint32_t cone_ids[MaxLights];
uint32_t flat_ids[MaxLights];
light_data->lightCount = 0;
R_FindNearLights (r_refdef.frame.position, MaxLights - 1, lights);
for (int i = 0; i < MaxLights - 1; i++) {
if (!lights[i]) {
break;
}
ico_ids[lframe->ico_count++] = light_data->lightCount++;
VectorCopy (lights[i]->color, light_data->lights[i].color);
// dynamic lights seem a tad faint, so 16x map lights
light_data->lights[i].color[3] = lights[i]->radius / 16;
VectorCopy (lights[i]->origin, light_data->lights[i].position);
// dlights are local point sources
light_data->lights[i].position[3] = 1;
light_data->lights[i].attenuation =
(vec4f_t) { 0, 0, 1, 1/lights[i]->radius };
// full sphere, normal light (not ambient)
light_data->lights[i].direction = (vec4f_t) { 0, 0, 1, 1 };
}
for (size_t i = 0; (i < ldata->lightvis.size
&& light_data->lightCount < MaxLights); i++) {
if (ldata->lightvis.a[i]) {
uint32_t id = light_data->lightCount++;
auto light = &light_data->lights[id];
*light = ldata->lights.a[i];
light->color[3] *= style_intensities[ldata->lightstyles.a[i]];
if (light->position[3] && !VectorIsZero (light->direction)
&& light->attenuation[3]) {
if (light->direction[3] < 0) {
cone_ids[lframe->cone_count++] = id;
} else {
ico_ids[lframe->ico_count++] = id;
}
} else {
flat_ids[lframe->flat_count++] = id;
}
}
}
if (developer & SYS_lighting) {
Vulkan_Draw_String (vid.width - 32, 8,
va (ctx->va_ctx, "%3d", light_data->lightCount),
ctx);
}
QFV_PacketCopyBuffer (packet, lframe->data_buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
uint32_t id_count = lframe->ico_count + lframe->cone_count
+ lframe->flat_count;
uint32_t *ids = QFV_PacketExtend (packet, id_count * sizeof (uint32_t));
memcpy (ids, ico_ids, lframe->ico_count * sizeof (uint32_t));
ids += lframe->ico_count;
memcpy (ids, cone_ids, lframe->cone_count * sizeof (uint32_t));
ids += lframe->cone_count;
memcpy (ids, flat_ids, lframe->flat_count * sizeof (uint32_t));
QFV_PacketCopyBuffer (packet, lframe->id_buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
}
static VkDescriptorBufferInfo base_buffer_info = {
0, 0, VK_WHOLE_SIZE
};
static VkDescriptorImageInfo base_image_info = {
0, 0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
};
static VkWriteDescriptorSet base_buffer_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0, 0, 0
};
static VkWriteDescriptorSet base_attachment_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
0, 0, 0
};
static VkWriteDescriptorSet base_image_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0, 0, 0
};
static void
lighting_update_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto fb = &taskctx->renderpass->framebuffer;
lframe->bufferInfo[0].buffer = lframe->data_buffer;
lframe->attachInfo[0].imageView = fb->views[QFV_attachDepth];
lframe->attachInfo[1].imageView = fb->views[QFV_attachColor];
lframe->attachInfo[2].imageView = fb->views[QFV_attachEmission];
lframe->attachInfo[3].imageView = fb->views[QFV_attachNormal];
lframe->attachInfo[4].imageView = fb->views[QFV_attachPosition];
dfunc->vkUpdateDescriptorSets (device->dev,
LIGHTING_DESCRIPTORS,
lframe->descriptors, 0, 0);
}
static void
lighting_bind_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto layout = taskctx->pipeline->layout;
auto lframe = &lctx->frames.a[ctx->curFrame];
VkDescriptorSet sets[] = {
Vulkan_Matrix_Descriptors (ctx, ctx->curFrame),
lframe->bufferWrite[0].dstSet,
lframe->attachWrite[0].dstSet,
lframe->shadowWrite.dstSet,
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 3, sets, 0, 0);
VkBuffer buffers[] = {
lframe->id_buffer,
lctx->splat_verts,
};
VkDeviceSize offsets[] = { 0, 0 };
dfunc->vkCmdBindVertexBuffers (cmd, 0, 2, buffers, offsets);
dfunc->vkCmdBindIndexBuffer (cmd, lctx->splat_inds, 0,
VK_INDEX_TYPE_UINT32);
}
static void
lighting_draw_splats (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (lframe->ico_count) {
dfunc->vkCmdDrawIndexed (cmd, num_ico_inds, lframe->ico_count, 0, 0, 0);
}
if (lframe->cone_count) {
dfunc->vkCmdDrawIndexed (cmd, num_cone_inds, lframe->cone_count,
num_ico_inds, 12, lframe->ico_count);
}
}
static void
lighting_draw_flats (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (!lframe->flat_count) {
return;
}
uint32_t splat_count = lframe->ico_count + lframe->cone_count;
dfunc->vkCmdDraw (cmd, 3, lframe->flat_count, 0, splat_count);
}
static exprfunc_t lighting_update_lights_func[] = {
{ .func = lighting_update_lights },
{}
};
static exprfunc_t lighting_update_descriptors_func[] = {
{ .func = lighting_update_descriptors },
{}
};
static exprfunc_t lighting_bind_descriptors_func[] = {
{ .func = lighting_bind_descriptors },
{}
};
static exprfunc_t lighting_draw_splats_func[] = {
{ .func = lighting_draw_splats },
{}
};
static exprfunc_t lighting_draw_flats_func[] = {
{ .func = lighting_draw_flats },
{}
};
static exprsym_t lighting_task_syms[] = {
{ "lighting_update_lights", &cexpr_function, lighting_update_lights_func },
{ "lighting_update_descriptors", &cexpr_function,
lighting_update_descriptors_func },
{ "lighting_bind_descriptors", &cexpr_function,
lighting_bind_descriptors_func },
{ "lighting_draw_splats", &cexpr_function, lighting_draw_splats_func },
{ "lighting_draw_flats", &cexpr_function, lighting_draw_flats_func },
{}
};
void
Vulkan_Lighting_Init (vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = calloc (1, sizeof (lightingctx_t));
ctx->lighting_context = lctx;
QFV_Render_AddTasks (ctx, lighting_task_syms);
}
static void
make_ico (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[ico_verts]));
float p = (sqrt(5) + 1) / 2;
float a = sqrt (3) / p;
float b = a / p;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
float my = j & 1 ? a : -a;
float mz = j & 2 ? b : -b;
int vind = i * 4 + j;
int ix = i;
int iy = (i + 1) % 3;
int iz = (i + 2) % 3;
verts[vind][ix] = 0;
verts[vind][iy] = my;
verts[vind][iz] = mz;
}
}
}
static void
make_cone (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[cone_verts]));
float a = 2 / sqrt (3);
float b = 1 / sqrt (3);
VectorSet ( 0, 0, 0, verts[0]);
VectorSet ( a, 0, -1, verts[1]);
VectorSet ( b, 1, -1, verts[2]);
VectorSet (-b, 1, -1, verts[3]);
VectorSet (-a, 0, -1, verts[4]);
VectorSet (-b, -1, -1, verts[5]);
VectorSet ( b, -1, -1, verts[6]);
}
static void
write_inds (qfv_packet_t *packet)
{
uint32_t *inds = QFV_PacketExtend (packet, sizeof (ico_inds)
+ sizeof (cone_inds));
memcpy (inds, ico_inds, sizeof (ico_inds));
inds += num_ico_inds;
memcpy (inds, cone_inds, sizeof (cone_inds));
}
void
Vulkan_Lighting_Setup (vulkan_ctx_t *ctx)
{
qfvPushDebug (ctx, "lighting init");
auto device = ctx->device;
auto lctx = ctx->lighting_context;
lctx->sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
Vulkan_Script_SetOutput (ctx,
&(qfv_output_t) { .format = VK_FORMAT_X8_D24_UNORM_PACK32 });
#if 0
plitem_t *rp_def = lctx->qfv_renderpass->renderpassDef;
plitem_t *rp_cfg = PL_ObjectForKey (rp_def, "renderpass_6");
lctx->renderpass_6 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
rp_cfg = PL_ObjectForKey (rp_def, "renderpass_4");
lctx->renderpass_4 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
rp_cfg = PL_ObjectForKey (rp_def, "renderpass_1");
lctx->renderpass_1 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def);
#endif
DARRAY_INIT (&lctx->light_mats, 16);
DARRAY_INIT (&lctx->light_images, 16);
DARRAY_INIT (&lctx->light_renderers, 16);
auto rctx = ctx->render_context;
size_t frames = rctx->frames.size;
DARRAY_INIT (&lctx->frames, frames);
DARRAY_RESIZE (&lctx->frames, frames);
lctx->frames.grow = 0;
lctx->light_resources = malloc (sizeof (qfv_resource_t)
// splat vertices
+ sizeof (qfv_resobj_t)
// splat indices
+ sizeof (qfv_resobj_t)
// light data
+ sizeof (qfv_resobj_t[frames])
// light indices
+ sizeof (qfv_resobj_t[frames]));
auto splat_verts = (qfv_resobj_t *) &lctx->light_resources[1];
auto splat_inds = &splat_verts[1];
auto light_data = &splat_inds[1];
auto light_ids = &light_data[frames];
lctx->light_resources[0] = (qfv_resource_t) {
.name = "lights",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 + 2 * frames,
.objects = splat_verts,
};
splat_verts[0] = (qfv_resobj_t) {
.name = "splat:vertices",
.type = qfv_res_buffer,
.buffer = {
.size = (20 + 7) * sizeof (vec3_t),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
},
};
splat_inds[0] = (qfv_resobj_t) {
.name = "splat:indices",
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (ico_inds) + sizeof (cone_inds),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
},
};
for (size_t i = 0; i < frames; i++) {
light_data[i] = (qfv_resobj_t) {
.name = "data",
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (qfv_light_buffer_t),
.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_ids[i] = (qfv_resobj_t) {
.name = "ids",
.type = qfv_res_buffer,
.buffer = {
.size = 2 * MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
}
QFV_CreateResource (ctx->device, lctx->light_resources);
lctx->splat_verts = splat_verts[0].buffer.buffer;
lctx->splat_inds = splat_inds[0].buffer.buffer;
auto attach_mgr = QFV_Render_DSManager (ctx, "lighting_attach");
auto lights_mgr = QFV_Render_DSManager (ctx, "lighting_lights");
auto shadow_mgr = QFV_Render_DSManager (ctx, "lighting_shadow");
for (size_t i = 0; i < frames; i++) {
auto lframe = &lctx->frames.a[i];
*lframe = (lightingframe_t) {
.data_buffer = light_data[i].buffer.buffer,
.id_buffer = light_ids[i].buffer.buffer,
};
auto attach = QFV_DSManager_AllocSet (attach_mgr);
auto lights = QFV_DSManager_AllocSet (lights_mgr);
auto shadow = QFV_DSManager_AllocSet (shadow_mgr);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, attach,
va (ctx->va_ctx, "lighting:attach_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, lights,
va (ctx->va_ctx, "lighting:lights_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, shadow,
va (ctx->va_ctx, "lighting:shadow_set:%zd", i));
for (int j = 0; j < LIGHTING_BUFFER_INFOS; j++) {
lframe->bufferInfo[j] = base_buffer_info;
lframe->bufferWrite[j] = base_buffer_write;
lframe->bufferWrite[j].dstSet = lights;
lframe->bufferWrite[j].dstBinding = j;
lframe->bufferWrite[j].pBufferInfo = &lframe->bufferInfo[j];
}
for (int j = 0; j < LIGHTING_ATTACH_INFOS; j++) {
lframe->attachInfo[j] = base_image_info;
lframe->attachInfo[j].sampler = 0;
lframe->attachWrite[j] = base_attachment_write;
lframe->attachWrite[j].dstSet = attach;
lframe->attachWrite[j].dstBinding = j;
lframe->attachWrite[j].pImageInfo = &lframe->attachInfo[j];
}
for (int j = 0; j < LIGHTING_SHADOW_INFOS; j++) {
lframe->shadowInfo[j] = base_image_info;
lframe->shadowInfo[j].sampler = lctx->sampler;
lframe->shadowInfo[j].imageView = ctx->default_black->view;
}
lframe->shadowWrite = base_image_write;
lframe->shadowWrite.dstSet = shadow;
lframe->shadowWrite.dstBinding = 0;
lframe->shadowWrite.descriptorCount = LIGHTING_SHADOW_INFOS;
lframe->shadowWrite.pImageInfo = lframe->shadowInfo;
}
auto packet = QFV_PacketAcquire (ctx->staging);
make_ico (packet);
make_cone (packet);
QFV_PacketCopyBuffer (packet, splat_verts[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
write_inds (packet);
QFV_PacketCopyBuffer (packet, splat_inds[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
qfvPopDebug (ctx);
}
static void
clear_shadows (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
for (size_t i = 0; i < lctx->light_renderers.size; i++) {
__auto_type lr = &lctx->light_renderers.a[i];
dfunc->vkDestroyFramebuffer (device->dev, lr->framebuffer, 0);
dfunc->vkDestroyImageView (device->dev, lr->view, 0);
}
if (lctx->shadow_resources) {
QFV_DestroyResource (device, lctx->shadow_resources);
free (lctx->shadow_resources);
lctx->shadow_resources = 0;
}
lctx->light_images.size = 0;
lctx->light_renderers.size = 0;
}
void
Vulkan_Lighting_Shutdown (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
clear_shadows (ctx);
dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_6, 0);
dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_4, 0);
dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_1, 0);
QFV_DestroyResource (device, lctx->light_resources);
free (lctx->light_resources);
DARRAY_CLEAR (&lctx->light_mats);
DARRAY_CLEAR (&lctx->light_images);
DARRAY_CLEAR (&lctx->light_renderers);
free (lctx->frames.a);
free (lctx);
}
static vec4f_t ref_direction = { 0, 0, 1, 0 };
static void
create_light_matrices (lightingctx_t *lctx)
{
lightingdata_t *ldata = lctx->ldata;
DARRAY_RESIZE (&lctx->light_mats, ldata->lights.size);
for (size_t i = 0; i < ldata->lights.size; i++) {
light_t *light = &ldata->lights.a[i];
mat4f_t view;
mat4f_t proj;
int mode = ST_NONE;
if (!light->position[3]) {
mode = ST_CASCADE;
} else {
if (light->direction[3] > -0.5) {
mode = ST_CUBE;
} else {
mode = ST_PLANE;
}
}
switch (mode) {
default:
case ST_NONE:
case ST_CUBE:
mat4fidentity (view);
break;
case ST_CASCADE:
case ST_PLANE:
//FIXME will fail for -ref_direction
vec4f_t dir = light->direction;
dir[3] = 0;
mat4fquat (view, qrotf (dir, ref_direction));
break;
}
VectorNegate (light->position, view[3]);
switch (mode) {
case ST_NONE:
mat4fidentity (proj);
break;
case ST_CUBE:
QFV_PerspectiveTan (proj, 1, 1);
break;
case ST_CASCADE:
// dependent on view fustrum and cascade level
mat4fidentity (proj);
break;
case ST_PLANE:
QFV_PerspectiveCos (proj, -light->direction[3]);
break;
}
mmulf (lctx->light_mats.a[i], proj, view);
}
}
static int
light_compare (const void *_li2, const void *_li1, void *_ldata)
{
const int *li1 = _li1;
const int *li2 = _li2;
lightingdata_t *ldata = _ldata;
const light_t *l1 = &ldata->lights.a[*li1];
const light_t *l2 = &ldata->lights.a[*li2];
int s1 = abs ((int) l1->color[3]);
int s2 = abs ((int) l2->color[3]);
if (s1 == s2) {
return (l1->position[3] == l2->position[3])
&& (l1->direction[3] > -0.5) == (l2->direction[3] > -0.5);
}
return s1 - s2;
}
static VkImageView
create_view (const light_renderer_t *lr, int id, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
VkImageViewType type = 0;
const char *viewtype = 0;
switch (lr->mode) {
case ST_NONE:
return 0;
case ST_PLANE:
type = VK_IMAGE_VIEW_TYPE_2D;
viewtype = "plane";
break;
case ST_CASCADE:
type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewtype = "cascade";
break;
case ST_CUBE:
type = VK_IMAGE_VIEW_TYPE_CUBE;
viewtype = "cube";
break;
}
VkImageViewCreateInfo createInfo = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, 0,
0,
lr->image, type, VK_FORMAT_X8_D24_UNORM_PACK32,
{
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
},
{ VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, lr->layer, lr->numLayers }
};
VkImageView view;
dfunc->vkCreateImageView (device->dev, &createInfo, 0, &view);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, view,
va (ctx->va_ctx, "iview:shadowmap:%s:%d",
viewtype, id));
(void) viewtype;//silence unused warning when vulkan debug disabled
return view;
}
static VkFramebuffer
create_framebuffer (const light_renderer_t *lr, vulkan_ctx_t *ctx)
{
return 0;//FIXME
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
VkFramebuffer framebuffer;
VkFramebufferCreateInfo cInfo = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = lr->renderPass,
.attachmentCount = 1,
.pAttachments = &lr->view,
.width = lr->size,
.height = lr->size,
.layers = 1,
};
dfunc->vkCreateFramebuffer (device->dev, &cInfo, 0, &framebuffer);
return framebuffer;
}
static void
build_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
typedef struct {
int size;
int layers;
int cube;
} mapdesc_t;
qfv_device_t *device = ctx->device;
qfv_physdev_t *physDev = device->physDev;
int maxLayers = physDev->properties->limits.maxImageArrayLayers;
lightingdata_t *ldata = lctx->ldata;
light_t *lights = ldata->lights.a;
int numLights = ldata->lights.size;
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int *imageMap = alloca (numLights * sizeof (int));
int *lightMap = alloca (numLights * sizeof (int));
int numMaps = 0;
mapdesc_t *maps = alloca (numLights * sizeof (mapdesc_t));
for (int i = 0; i < numLights; i++) {
lightMap[i] = i;
}
heapsort_r (lightMap, numLights, sizeof (int), light_compare, ldata);
DARRAY_RESIZE (&lctx->light_renderers, numLights);
for (int i = 0; i < numLights; i++) {
int layers = 1;
int li = lightMap[i];
__auto_type lr = &lctx->light_renderers.a[li];
*lr = (light_renderer_t) {};
if (!lights[li].position[3]) {
if (!VectorIsZero (lights[li].direction)) {
lr->mode = ST_CASCADE;
}
} else {
if (lights[li].direction[3] > -0.5) {
lr->mode = ST_CUBE;
} else {
lr->mode = ST_PLANE;
}
}
if (lr->mode == ST_CASCADE || lr->mode == ST_NONE) {
// cascade shadows will be handled separately, and "none" has no
// shadow map at all
imageMap[li] = -1;
continue;
}
if (lr->mode == ST_CUBE) {
layers = 6;
}
if (size != abs ((int) lights[li].color[3])
|| numLayers + layers > maxLayers) {
if (numLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 1,
};
numLayers = 0;
}
size = abs ((int) lights[li].color[3]);
}
imageMap[li] = numMaps;
lr->size = size;
lr->layer = numLayers;
lr->numLayers = layers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 1,
};
}
numLayers = 0;
size = 1024;
for (int i = 0; i < numLights; i++) {
int layers = 4;
int li = lightMap[i];
__auto_type lr = &lctx->light_renderers.a[li];
if (lr->mode != ST_CASCADE) {
continue;
}
if (numLayers + layers > maxLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 0,
};
numLayers = 0;
}
imageMap[li] = numMaps;
lr->size = size;
lr->layer = numLayers;
lr->numLayers = layers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
maps[numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = 0,
};
}
if (numMaps) {
qfv_resource_t *shad = calloc (1, sizeof (qfv_resource_t)
+ numMaps * sizeof (qfv_resobj_t));
lctx->shadow_resources = shad;
*shad = (qfv_resource_t) {
.name = "shadow",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = numMaps,
.objects = (qfv_resobj_t *) &shad[1],
};
for (int i = 0; i < numMaps; i++) {
int cube = maps[i].layers < 6 ? 0 : maps[i].cube;
shad->objects[i] = (qfv_resobj_t) {
.name = "map",
.type = qfv_res_image,
.image = {
.flags = cube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.extent = { maps[i].size, maps[i].size, 1 },
.num_mipmaps = 1,
.num_layers = maps[i].layers,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
}
QFV_CreateResource (device, shad);
for (int i = 0; i < numMaps; i++) {
DARRAY_APPEND (&lctx->light_images, shad->objects[i].image.image);
}
}
for (int i = 0; i < numLights; i++) {
int li = lightMap[i];
__auto_type lr = &lctx->light_renderers.a[li];
if (imageMap[li] == -1) {
continue;
}
switch (lr->numLayers) {
case 6:
lr->renderPass = lctx->renderpass_6;
break;
case 4:
lr->renderPass = lctx->renderpass_4;
break;
case 1:
lr->renderPass = lctx->renderpass_1;
break;
default:
Sys_Error ("build_shadow_maps: invalid light layer count: %u",
lr->numLayers);
}
lr->image = lctx->light_images.a[imageMap[li]];
lr->view = create_view (lr, li, ctx);
lr->framebuffer = create_framebuffer(lr, ctx);
}
Sys_MaskPrintf (SYS_vulkan,
"shadow maps: %d layers in %zd images: %"PRId64"\n",
totalLayers, lctx->light_images.size,
lctx->shadow_resources->size);
}
void
Vulkan_LoadLights (scene_t *scene, vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = ctx->lighting_context;
lctx->scene = scene;
lctx->ldata = scene ? scene->lights : 0;
clear_shadows (ctx);
if (lctx->ldata && lctx->ldata->lights.size) {
build_shadow_maps (lctx, ctx);
create_light_matrices (lctx);
}
}