* it's no longer the main texture objects managing the pixel buffer but FSoftwareTexture.
* create proper spans for true color textures. The paletted spans only match if the image does not have any translucent pixels.
* create proper warp textures instead of working off the paletted variants.
As a side effect, caching of pixel buffers for texture composition is temporarily disabled, as it management of texture redirections. These things will be reimplemented once things progress further. The existing methods here had their share of serious issues that should be fixed.
CMakeFiles/zdoom.dir/r_utility.cpp.o: In function `R_SetupFrame(FRenderViewpoint&, FViewWindow&, AActor*)':
/home/travis/build/coelckers/gzdoom/src/r_utility.cpp:832: undefined reference to `AActor::GetCameraHeight() const'
CMakeFiles/zdoom.dir/g_shared/a_action.cpp.o: In function `A_Unblock(AActor*, bool)':
/home/travis/build/coelckers/gzdoom/src/g_shared/a_action.cpp:64: undefined reference to `AActor::GetDropItems() const'
- move a few variables from SceneDrawer to FRenderViewpoint.
The global r_viewpoint variable is left alone now to always represent the current viewpoint to the play code.
The main reason behind this change is to reduce the amount of global variables being used by the hardware renderer's scene processing code.
- with renderers freely switchable, some shortcuts in the 3D floor code had to be removed, because now the hardware renderer can get FF_THISINSIDE-flagged 3D floors.
- changed handling of attenuated lights in the legacy renderer to be adjusted when being rendered instead of when being spawned. For the software renderer the light needs to retain its original values.
This does not work with a setup where the same backend is driving both renderers.
Most of this is now routed through 'screen', and the decision between renderers has to be made inside the actual render functions.
The software renderer is still driven by a thin opaque interface to keep it mostly an isolated module.
The old organization made sense when ZDoom still was a thing but now it'd be better if all pure data with no dependence on renderer implementation details was moved out.
A separation between GL2 and GL3+4 renderers looks to be inevitable and the more data is out of the renderer when that happens, the better.
This was done mainly to reduce the amount of occurences of the word FTexture but it immediately helped detect two small and mostly harmless bugs that were found due to the stricter type checks.
- now that the frame buffer stores its render time, the 'ms' return from I_GetTimeFrac is not needed anymore, we may just as well use the globally stored value instead.
The only feature this value was ever used for was texture warping.
* store the frame time in the current screen buffer from where all render code can access it.
* replace some uses of I_MSTime with I_FPSTime, because they should not use a per-frame timer. The only one left is the wipe code but even this doesn't look like it needs either a per-frame timer or a timer counting from the start of the playsim.
- moved timer definitions into their own header/source files. d_main is not the right place for this.
- removed some leftover cruft from the old timer code.
For some files that had the Doom Source license attached but saw heavy external contributions over the years I added a special note to license all original ZDoom code under BSD.
This allows using the UI scale or its own value, like all other scaling values.
In addition there is a choice between preserving equal pixel size or aspect ratio because the squashed non-corrected versions tend to look odd, but since proper scaling requires ununiform pixel sizes it is an option.
- changed how status bar sizes are being handled.
This has to recalculate all scaling and positioning factors, which can cause problems if the drawer leaves with some temporary values that do not reflect the status bar as a whole.
Changed it so that the status bar stores the base values and restores them after drawing is complete.
- moved testcolor and test fades into SWRenderer files.
These CCMDs work by hacking the default colormap and were never implemented for hardware rendering because they require many checks throughout the code.
(Is there anyway to tone down GCC's warning level? It outputs too many false positives for potentially uninitialized variables in which the genuine errors get drowned.)