UltimateZoneBuilder/Source/Native/OpenGL/GLRenderDevice.cpp

996 lines
26 KiB
C++
Raw Normal View History

/*
** BuilderNative Renderer
** Copyright (c) 2019 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
*/
#include "Precomp.h"
#include "GLRenderDevice.h"
#include "GLVertexBuffer.h"
#include "GLIndexBuffer.h"
#include "GLTexture.h"
#include "GLShaderManager.h"
#include <stdexcept>
#include <cstdarg>
#include <algorithm>
#include <cmath>
static void APIENTRY GLLogCallback(GLenum source, GLenum type, GLuint id,
GLenum severity, GLsizei length, const GLchar* message, const void* userParam)
{
2020-09-19 13:49:19 +00:00
FILE* f = fopen("OpenGLDebug.log", "ab");
if (!f) return;
fprintf(f, "%s\r\n", message);
fclose(f);
}
2020-09-19 13:49:19 +00:00
static const char* GLLogCheckNull(const GLubyte* str)
{
return str ? (const char*)str : "null";
}
GLRenderDevice::GLRenderDevice(void* disp, void* window)
{
Context = IOpenGLContext::Create(disp, window);
if (Context)
{
Context->MakeCurrent();
#ifdef _DEBUG
2020-09-19 13:49:19 +00:00
FILE* f = fopen("OpenGLDebug.log", "wb");
if (f)
{
fprintf(f, "GL_VENDOR = %s\r\n", GLLogCheckNull(glGetString(GL_VENDOR)));
fprintf(f, "GL_RENDERER = %s\r\n", GLLogCheckNull(glGetString(GL_RENDERER)));
fprintf(f, "GL_VERSION = %s\r\n", GLLogCheckNull(glGetString(GL_VERSION)));
fprintf(f, "GL_SHADING_LANGUAGE_VERSION = %s\r\n", GLLogCheckNull(glGetString(GL_SHADING_LANGUAGE_VERSION)));
fclose(f);
glEnable(GL_DEBUG_OUTPUT);
glDebugMessageCallback(&GLLogCallback, nullptr);
}
#endif
glGenVertexArrays(1, &mStreamVAO);
glGenBuffers(1, &mStreamVertexBuffer);
glBindVertexArray(mStreamVAO);
glBindBuffer(GL_ARRAY_BUFFER, mStreamVertexBuffer);
GLSharedVertexBuffer::SetupFlatVAO();
int i = 0;
for (auto& sharedbuf : mSharedVertexBuffers)
{
sharedbuf.reset(new GLSharedVertexBuffer((VertexFormat)i, (int64_t)16 * 1024 * 1024));
glBindBuffer(GL_ARRAY_BUFFER, sharedbuf->GetBuffer());
glBufferData(GL_ARRAY_BUFFER, sharedbuf->Size, nullptr, GL_STATIC_DRAW);
i++;
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
mShaderManager = std::make_unique<GLShaderManager>();
CheckGLError();
}
}
GLRenderDevice::~GLRenderDevice()
{
if (Context)
{
Context->MakeCurrent();
ProcessDeleteList();
for (GLTexture* tex : mTextures) mDeleteList.Textures.push_back(tex);
for (GLIndexBuffer* buffer : mIndexBuffers) mDeleteList.IndexBuffers.push_back(buffer);
for (GLVertexBuffer* buffer : mSharedVertexBuffers[0]->VertexBuffers) mDeleteList.VertexBuffers.push_back(buffer);
for (GLVertexBuffer* buffer : mSharedVertexBuffers[1]->VertexBuffers) mDeleteList.VertexBuffers.push_back(buffer);
2019-12-26 00:09:31 +00:00
ProcessDeleteList(true);
glDeleteBuffers(1, &mStreamVertexBuffer);
glDeleteVertexArrays(1, &mStreamVAO);
for (auto& sharedbuf : mSharedVertexBuffers)
{
GLuint handle = sharedbuf->GetBuffer();
glDeleteBuffers(1, &handle);
handle = sharedbuf->GetVAO();
glDeleteVertexArrays(1, &handle);
}
for (auto& it : mSamplers)
{
for (GLuint handle : it.second.WrapModes)
{
if (handle != 0)
glDeleteSamplers(1, &handle);
}
}
mShaderManager->ReleaseResources();
Context->ClearCurrent();
}
}
void GLRenderDevice::DeclareShader(ShaderName index, const char* name, const char* vertexshader, const char* fragmentshader)
{
CheckContext();
mShaderManager->DeclareShader(index, name, vertexshader, fragmentshader);
}
void GLRenderDevice::SetVertexBuffer(VertexBuffer* ibuffer)
{
GLVertexBuffer* buffer = static_cast<GLVertexBuffer*>(ibuffer);
if (buffer != nullptr)
{
mVertexBufferStartIndex = buffer->BufferStartIndex;
if (mVertexBuffer != (int)buffer->Format)
{
mVertexBuffer = (int)buffer->Format;
mNeedApply = true;
mVertexBufferChanged = true;
}
}
else
{
mVertexBufferStartIndex = 0;
if (mVertexBuffer != -1)
{
mVertexBuffer = -1;
mNeedApply = true;
mVertexBufferChanged = true;
}
}
}
void GLRenderDevice::SetIndexBuffer(IndexBuffer* buffer)
{
if (mIndexBuffer != buffer)
{
mIndexBuffer = static_cast<GLIndexBuffer*>(buffer);
mNeedApply = true;
mIndexBufferChanged = true;
}
}
void GLRenderDevice::SetAlphaBlendEnable(bool value)
{
if (mAlphaBlend != value)
{
mAlphaBlend = value;
mNeedApply = true;
mBlendStateChanged = true;
}
}
void GLRenderDevice::SetAlphaTestEnable(bool value)
{
if (mAlphaTest != value)
{
mAlphaTest = value;
mNeedApply = true;
mShaderChanged = true;
mUniformsChanged = true;
}
}
void GLRenderDevice::SetCullMode(Cull mode)
{
if (mCullMode != mode)
{
mCullMode = mode;
mNeedApply = true;
mRasterizerStateChanged = true;
}
}
void GLRenderDevice::SetBlendOperation(BlendOperation op)
{
if (mBlendOperation != op)
{
mBlendOperation = op;
mNeedApply = true;
mBlendStateChanged = true;
}
}
void GLRenderDevice::SetSourceBlend(Blend blend)
{
if (mSourceBlend != blend)
{
mSourceBlend = blend;
mNeedApply = true;
mBlendStateChanged = true;
}
}
void GLRenderDevice::SetDestinationBlend(Blend blend)
{
if (mDestinationBlend != blend)
{
mDestinationBlend = blend;
mNeedApply = true;
mBlendStateChanged = true;
}
}
void GLRenderDevice::SetFillMode(FillMode mode)
{
if (mFillMode != mode)
{
mFillMode = mode;
mNeedApply = true;
mRasterizerStateChanged = true;
}
}
void GLRenderDevice::SetMultisampleAntialias(bool value)
{
}
void GLRenderDevice::SetZEnable(bool value)
{
if (mDepthTest != value)
{
mDepthTest = value;
mNeedApply = true;
mDepthStateChanged = true;
}
}
void GLRenderDevice::SetZWriteEnable(bool value)
{
if (mDepthWrite != value)
{
mDepthWrite = value;
mNeedApply = true;
mDepthStateChanged = true;
}
}
void GLRenderDevice::SetTexture(Texture* texture)
{
if (mTextureUnit.Tex != texture)
{
mTextureUnit.Tex = static_cast<GLTexture*>(texture);
mNeedApply = true;
mTexturesChanged = true;
}
}
void GLRenderDevice::SetSamplerFilter(TextureFilter minfilter, TextureFilter magfilter, MipmapFilter mipfilter, float maxanisotropy)
{
SamplerFilterKey key;
key.MinFilter = GetGLMinFilter(minfilter, mipfilter);
key.MagFilter = (magfilter == TextureFilter::Nearest) ? GL_NEAREST : GL_LINEAR;
key.MaxAnisotropy = maxanisotropy;
if (mSamplerFilterKey != key)
{
mSamplerFilterKey = key;
mSamplerFilter = &mSamplers[mSamplerFilterKey];
mNeedApply = true;
mTexturesChanged = true;
}
}
GLint GLRenderDevice::GetGLMinFilter(TextureFilter filter, MipmapFilter mipfilter)
{
if (mipfilter == MipmapFilter::Linear)
{
if (filter == TextureFilter::Nearest)
return GL_NEAREST_MIPMAP_LINEAR;
else
return GL_LINEAR_MIPMAP_LINEAR;
}
else if (mipfilter == MipmapFilter::Nearest)
{
if (filter == TextureFilter::Nearest)
return GL_NEAREST_MIPMAP_NEAREST;
else
return GL_LINEAR_MIPMAP_NEAREST;
}
else
{
if (filter == TextureFilter::Nearest)
return GL_NEAREST;
else
return GL_LINEAR;
}
}
void GLRenderDevice::SetSamplerState(TextureAddress address)
{
if (mTextureUnit.WrapMode != address)
{
mTextureUnit.WrapMode = address;
mNeedApply = true;
mTexturesChanged = true;
}
}
bool GLRenderDevice::Draw(PrimitiveType type, int startIndex, int primitiveCount)
{
static const int modes[] = { GL_LINES, GL_TRIANGLES, GL_TRIANGLE_STRIP };
static const int toVertexCount[] = { 2, 3, 1 };
static const int toVertexStart[] = { 0, 0, 2 };
if (mNeedApply && !ApplyChanges()) return false;
glDrawArrays(modes[(int)type], mVertexBufferStartIndex + startIndex, toVertexStart[(int)type] + primitiveCount * toVertexCount[(int)type]);
return CheckGLError();
}
bool GLRenderDevice::DrawIndexed(PrimitiveType type, int startIndex, int primitiveCount)
{
static const int modes[] = { GL_LINES, GL_TRIANGLES, GL_TRIANGLE_STRIP };
static const int toVertexCount[] = { 2, 3, 1 };
static const int toVertexStart[] = { 0, 0, 2 };
if (mNeedApply && !ApplyChanges()) return false;
glDrawElementsBaseVertex(modes[(int)type], toVertexStart[(int)type] + primitiveCount * toVertexCount[(int)type], GL_UNSIGNED_INT, (const void*)(startIndex * sizeof(uint32_t)), mVertexBufferStartIndex);
return CheckGLError();
}
bool GLRenderDevice::DrawData(PrimitiveType type, int startIndex, int primitiveCount, const void* data)
{
static const int modes[] = { GL_LINES, GL_TRIANGLES, GL_TRIANGLE_STRIP };
static const int toVertexCount[] = { 2, 3, 1 };
static const int toVertexStart[] = { 0, 0, 2 };
int vertcount = toVertexStart[(int)type] + primitiveCount * toVertexCount[(int)type];
if (mNeedApply && !ApplyChanges()) return false;
glBindBuffer(GL_ARRAY_BUFFER, mStreamVertexBuffer);
glBufferData(GL_ARRAY_BUFFER, vertcount * (size_t)VertexBuffer::FlatStride, static_cast<const uint8_t*>(data) + startIndex * (size_t)VertexBuffer::FlatStride, GL_STREAM_DRAW);
glBindVertexArray(mStreamVAO);
glDrawArrays(modes[(int)type], 0, vertcount);
if (!CheckGLError()) return false;
return ApplyVertexBuffer();
}
void GLRenderDevice::RequireContext()
{
Context->MakeCurrent();
mContextIsCurrent = true;
}
void GLRenderDevice::CheckContext()
{
if (!mContextIsCurrent) Context->MakeCurrent();
mContextIsCurrent = true;
}
bool GLRenderDevice::StartRendering(bool clear, int backcolor, Texture* itarget, bool usedepthbuffer)
{
RequireContext();
GLTexture* target = static_cast<GLTexture*>(itarget);
if (target)
{
GLuint framebuffer = 0;
try
{
framebuffer = target->GetFramebuffer(this, usedepthbuffer);
}
catch (std::runtime_error& e)
{
SetError("Error setting render target: %s", e.what());
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
mViewportWidth = target->GetWidth();
mViewportHeight = target->GetHeight();
if (!ApplyViewport()) return false;
}
else
{
glBindFramebuffer(GL_FRAMEBUFFER, 0);
mViewportWidth = Context->GetWidth();
mViewportHeight = Context->GetHeight();
if (!ApplyViewport()) return false;
}
if (clear && usedepthbuffer)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glClearColor(RPART(backcolor) / 255.0f, GPART(backcolor) / 255.0f, BPART(backcolor) / 255.0f, APART(backcolor) / 255.0f);
glClearDepthf(1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
else if (clear)
{
glClearColor(RPART(backcolor) / 255.0f, GPART(backcolor) / 255.0f, BPART(backcolor) / 255.0f, APART(backcolor) / 255.0f);
glClear(GL_COLOR_BUFFER_BIT);
}
mNeedApply = true;
mShaderChanged = true;
mUniformsChanged = true;
mTexturesChanged = true;
mIndexBufferChanged = true;
mVertexBufferChanged = true;
mDepthStateChanged = true;
mBlendStateChanged = true;
mRasterizerStateChanged = true;
return CheckGLError();
}
bool GLRenderDevice::FinishRendering()
{
mContextIsCurrent = false;
return true;
}
bool GLRenderDevice::Present()
{
Context->MakeCurrent();
Context->SwapBuffers();
ProcessDeleteList();
return CheckGLError();
}
bool GLRenderDevice::ClearTexture(int backcolor, Texture* texture)
{
if (!StartRendering(true, backcolor, texture, false)) return false;
return FinishRendering();
}
bool GLRenderDevice::CopyTexture(Texture* idst, CubeMapFace face)
{
GLTexture* dst = static_cast<GLTexture*>(idst);
static const GLenum facegl[] = {
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
};
CheckContext();
GLint oldTexture = 0;
glGetIntegerv(GL_TEXTURE_BINDING_CUBE_MAP, &oldTexture);
glBindTexture(GL_TEXTURE_CUBE_MAP, dst->GetTexture(this));
glCopyTexSubImage2D(facegl[(int)face], 0, 0, 0, 0, 0, dst->GetWidth(), dst->GetHeight());
if (face == CubeMapFace::NegativeZ)
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
glBindTexture(GL_TEXTURE_CUBE_MAP, oldTexture);
bool result = CheckGLError();
return result;
}
void GLRenderDevice::GarbageCollectBuffer(int size, VertexFormat format)
{
auto& sharedbuf = mSharedVertexBuffers[(int)format];
if (sharedbuf->NextPos + size <= sharedbuf->Size)
return;
int totalSize = size;
for (GLVertexBuffer* buf : sharedbuf->VertexBuffers)
totalSize += buf->Size;
// If buffer is only half full we only need to GC. Otherwise we also need to expand the buffer size.
int newSize = std::max(totalSize, sharedbuf->Size);
if (newSize < totalSize * 2) newSize *= 2;
std::unique_ptr<GLSharedVertexBuffer> old = std::move(sharedbuf);
sharedbuf.reset(new GLSharedVertexBuffer(format, newSize));
GLint oldarray = 0, oldvao = 0;
glGetIntegerv(GL_ARRAY_BUFFER_BINDING, &oldarray);
glGetIntegerv(GL_VERTEX_ARRAY_BINDING, &oldvao);
glBindBuffer(GL_ARRAY_BUFFER, sharedbuf->GetBuffer());
glBufferData(GL_ARRAY_BUFFER, sharedbuf->Size, nullptr, GL_STATIC_DRAW);
glBindBuffer(GL_COPY_READ_BUFFER, old->GetBuffer());
// Copy all ranges still in use to the new buffer
int stride = (format == VertexFormat::Flat ? VertexBuffer::FlatStride : VertexBuffer::WorldStride);
int readPos = 0;
int writePos = 0;
int copySize = 0;
for (GLVertexBuffer* buf : old->VertexBuffers)
{
if (buf->BufferOffset != readPos + copySize)
{
if (copySize != 0)
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_ARRAY_BUFFER, readPos, writePos, copySize);
readPos = buf->BufferOffset;
writePos += copySize;
copySize = 0;
}
buf->BufferOffset = sharedbuf->NextPos;
buf->BufferStartIndex = buf->BufferOffset / stride;
sharedbuf->NextPos += buf->Size;
copySize += buf->Size;
}
if (copySize != 0)
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_ARRAY_BUFFER, readPos, writePos, copySize);
sharedbuf->VertexBuffers.swap(old->VertexBuffers);
glBindBuffer(GL_COPY_READ_BUFFER, 0);
GLuint handle = old->GetVAO();
glDeleteVertexArrays(1, &handle);
if (handle == oldvao) oldvao = sharedbuf->GetVAO();
handle = old->GetBuffer();
glDeleteBuffers(1, &handle);
if (handle == oldarray) oldarray = sharedbuf->GetBuffer();
glBindBuffer(GL_ARRAY_BUFFER, oldarray);
glBindVertexArray(oldvao);
mVertexBufferChanged = true;
mNeedApply = true;
}
bool GLRenderDevice::SetVertexBufferData(VertexBuffer* ibuffer, void* data, int64_t size, VertexFormat format)
{
CheckContext();
GLVertexBuffer* buffer = static_cast<GLVertexBuffer*>(ibuffer);
if (buffer->Device)
{
buffer->Device->mSharedVertexBuffers[(int)buffer->Format]->VertexBuffers.erase(buffer->ListIt);
buffer->Device = nullptr;
}
GarbageCollectBuffer(size, format);
auto& sharedbuf = mSharedVertexBuffers[(int)format];
GLint oldbinding = 0;
glGetIntegerv(GL_ARRAY_BUFFER_BINDING, &oldbinding);
glBindBuffer(GL_ARRAY_BUFFER, sharedbuf->GetBuffer());
buffer->ListIt = sharedbuf->VertexBuffers.insert(sharedbuf->VertexBuffers.end(), buffer);
buffer->Device = this;
buffer->Size = size;
buffer->Format = format;
buffer->BufferOffset = sharedbuf->NextPos;
buffer->BufferStartIndex = buffer->BufferOffset / (format == VertexFormat::Flat ? VertexBuffer::FlatStride : VertexBuffer::WorldStride);
sharedbuf->NextPos += size;
glBufferSubData(GL_ARRAY_BUFFER, buffer->BufferOffset, size, data);
glBindBuffer(GL_ARRAY_BUFFER, oldbinding);
bool result = CheckGLError();
return result;
}
bool GLRenderDevice::SetVertexBufferSubdata(VertexBuffer* ibuffer, int64_t destOffset, void* data, int64_t size)
{
CheckContext();
GLVertexBuffer* buffer = static_cast<GLVertexBuffer*>(ibuffer);
GLint oldbinding = 0;
glGetIntegerv(GL_ARRAY_BUFFER_BINDING, &oldbinding);
glBindBuffer(GL_ARRAY_BUFFER, mSharedVertexBuffers[(int)buffer->Format]->GetBuffer());
glBufferSubData(GL_ARRAY_BUFFER, buffer->BufferOffset + destOffset, size, data);
glBindBuffer(GL_ARRAY_BUFFER, oldbinding);
bool result = CheckGLError();
return result;
}
bool GLRenderDevice::SetIndexBufferData(IndexBuffer* ibuffer, void* data, int64_t size)
{
CheckContext();
GLIndexBuffer* buffer = static_cast<GLIndexBuffer*>(ibuffer);
if (buffer->Device == nullptr)
{
buffer->ItBuffer = mIndexBuffers.insert(mIndexBuffers.end(), buffer);
buffer->Device = this;
}
GLint oldbinding = 0;
glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING, &oldbinding);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer->GetBuffer());
glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, data, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oldbinding);
bool result = CheckGLError();
return result;
}
bool GLRenderDevice::SetPixels(Texture* itexture, const void* data)
{
CheckContext();
GLTexture* texture = static_cast<GLTexture*>(itexture);
texture->SetPixels(this, data);
return CheckGLError();
}
bool GLRenderDevice::SetCubePixels(Texture* itexture, CubeMapFace face, const void* data)
{
GLTexture* texture = static_cast<GLTexture*>(itexture);
texture->SetCubePixels(this, face, data);
return CheckGLError();
}
void* GLRenderDevice::MapPBO(Texture* itexture)
{
CheckContext();
GLTexture* texture = static_cast<GLTexture*>(itexture);
GLint pbo = texture->GetPBO(this);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
void* buf = glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY);
bool result = CheckGLError();
if (!result && buf)
{
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
buf = nullptr;
}
return buf;
}
bool GLRenderDevice::UnmapPBO(Texture* itexture)
{
CheckContext();
GLTexture* texture = static_cast<GLTexture*>(itexture);
GLint pbo = texture->GetPBO(this);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
glBindTexture(GL_TEXTURE_2D, texture->GetTexture(this));
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, texture->GetWidth(), texture->GetHeight(), 0, GL_BGRA, GL_UNSIGNED_BYTE, nullptr);
bool result = CheckGLError();
mNeedApply = true;
mTexturesChanged = true;
return result;
}
bool GLRenderDevice::InvalidateTexture(GLTexture* texture)
{
if (texture->IsTextureCreated())
{
CheckContext();
texture->Invalidate();
bool result = CheckGLError();
mNeedApply = true;
mTexturesChanged = true;
return result;
}
else
{
return true;
}
}
bool GLRenderDevice::CheckGLError()
{
if (!Context->IsCurrent())
{
SetError("Unexpected current OpenGL context");
}
GLenum error = glGetError();
if (error == GL_NO_ERROR)
return true;
SetError("OpenGL error: %d", error);
return false;
}
GLShader* GLRenderDevice::GetActiveShader()
{
if (mAlphaTest)
return &mShaderManager->AlphaTestShaders[(int)mShaderName];
else
return &mShaderManager->Shaders[(int)mShaderName];
}
void GLRenderDevice::SetShader(ShaderName name)
{
if (name != mShaderName)
{
mShaderName = name;
mNeedApply = true;
mShaderChanged = true;
mUniformsChanged = true;
}
}
void GLRenderDevice::SetUniform(UniformName name, const void* values, int count, int bytesize)
{
// "count" should be in bytes now
UniformInfo& info = mUniformInfo[(int)name];
info.Count = count;
info.Data.resize(bytesize);
uint8_t* dest = info.Data.data();
if (memcmp(dest, values, bytesize) != 0)
{
memcpy(dest, values, bytesize);
mUniformInfo[(int)name].LastUpdate++;
mNeedApply = true;
mUniformsChanged = true;
}
}
bool GLRenderDevice::ApplyChanges()
{
if (mShaderChanged && !ApplyShader()) return false;
if (mVertexBufferChanged && !ApplyVertexBuffer()) return false;
if (mIndexBufferChanged && !ApplyIndexBuffer()) return false;
if (mUniformsChanged && !ApplyUniforms()) return false;
if (mTexturesChanged && !ApplyTextures()) return false;
if (mRasterizerStateChanged && !ApplyRasterizerState()) return false;
if (mBlendStateChanged && !ApplyBlendState()) return false;
if (mDepthStateChanged && !ApplyDepthState()) return false;
mNeedApply = false;
return true;
}
bool GLRenderDevice::ApplyViewport()
{
glViewport(0, 0, mViewportWidth, mViewportHeight);
return CheckGLError();
}
bool GLRenderDevice::ApplyShader()
{
GLShader* curShader = GetActiveShader();
if (!curShader->CheckCompile(this))
{
SetError("Failed to bind shader:\r\n%s", curShader->GetCompileError().c_str());
return false;
}
curShader->Bind();
mShaderChanged = false;
return CheckGLError();
}
bool GLRenderDevice::ApplyRasterizerState()
{
if (mCullMode == Cull::None)
{
glDisable(GL_CULL_FACE);
}
else
{
glEnable(GL_CULL_FACE);
glFrontFace(GL_CW);
}
GLenum fillMode2GL[] = { GL_FILL, GL_LINE };
glPolygonMode(GL_FRONT_AND_BACK, fillMode2GL[(int)mFillMode]);
mRasterizerStateChanged = false;
return CheckGLError();
}
bool GLRenderDevice::ApplyBlendState()
{
if (mAlphaBlend)
{
static const GLenum blendOp2GL[] = { GL_FUNC_ADD, GL_FUNC_REVERSE_SUBTRACT };
static const GLenum blendFunc2GL[] = { GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA, GL_ONE };
glEnable(GL_BLEND);
glBlendEquation(blendOp2GL[(int)mBlendOperation]);
glBlendFunc(blendFunc2GL[(int)mSourceBlend], blendFunc2GL[(int)mDestinationBlend]);
}
else
{
glDisable(GL_BLEND);
}
mBlendStateChanged = false;
return CheckGLError();
}
bool GLRenderDevice::ApplyDepthState()
{
if (mDepthTest)
{
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glDepthMask(mDepthWrite ? GL_TRUE : GL_FALSE);
}
else
{
glDisable(GL_DEPTH_TEST);
}
mDepthStateChanged = false;
return CheckGLError();
}
bool GLRenderDevice::ApplyIndexBuffer()
{
if (mIndexBuffer)
{
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mIndexBuffer->GetBuffer());
}
else
{
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
mIndexBufferChanged = false;
return CheckGLError();
}
bool GLRenderDevice::ApplyVertexBuffer()
{
if (mVertexBuffer != -1)
glBindVertexArray(mSharedVertexBuffers[mVertexBuffer]->GetVAO());
mVertexBufferChanged = false;
return CheckGLError();
}
void GLRenderDevice::DeclareUniform(UniformName name, const char* glslname, UniformType type)
{
size_t index = (size_t)name;
if (mUniformInfo.size() <= index)
mUniformInfo.resize(index + 1);
UniformInfo& info = mUniformInfo[index];
info.Name = glslname;
info.Type = type;
}
bool GLRenderDevice::ApplyUniforms()
{
GLShader* shader = GetActiveShader();
GLuint* locations = shader->UniformLocations.data();
int* lastupdates = shader->UniformLastUpdates.data();
int count = (int)mUniformInfo.size();
for (int i = 0; i < count; i++)
{
UniformInfo& info = mUniformInfo.data()[i];
if (lastupdates[i] != info.LastUpdate)
{
float* data = (float*)info.Data.data();
int* idata = (int*)info.Data.data();
GLuint location = locations[i];
switch (mUniformInfo[i].Type)
{
default: break;
case UniformType::Vec4f: glUniform4fv(location, 1, data); break;
case UniformType::Vec3f: glUniform3fv(location, 1, data); break;
case UniformType::Vec2f: glUniform2fv(location, 1, data); break;
case UniformType::Float: glUniform1fv(location, 1, data); break;
case UniformType::Mat4: glUniformMatrix4fv(location, 1, GL_FALSE, data); break;
case UniformType::Vec4i: glUniform4iv(location, 1, idata); break;
case UniformType::Vec3i: glUniform3iv(location, 1, idata); break;
case UniformType::Vec2i: glUniform2iv(location, 1, idata); break;
case UniformType::Int: glUniform1iv(location, 1, idata); break;
case UniformType::Vec4fArray: glUniform4fv(location, info.Count, data); break;
case UniformType::Vec3fArray: glUniform3fv(location, info.Count, data); break;
case UniformType::Vec2fArray: glUniform2fv(location, info.Count, data); break;
}
lastupdates[i] = mUniformInfo[i].LastUpdate;
}
}
mUniformsChanged = false;
return CheckGLError();
}
bool GLRenderDevice::ApplyTextures()
{
glActiveTexture(GL_TEXTURE0);
if (mTextureUnit.Tex)
{
GLenum target = mTextureUnit.Tex->IsCubeTexture() ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
glBindTexture(target, mTextureUnit.Tex->GetTexture(this));
GLuint& samplerHandle = mSamplerFilter->WrapModes[(int)mTextureUnit.WrapMode];
if (samplerHandle == 0)
{
static const int wrapMode[] = { GL_REPEAT, GL_CLAMP_TO_EDGE };
glGenSamplers(1, &samplerHandle);
glSamplerParameteri(samplerHandle, GL_TEXTURE_MIN_FILTER, mSamplerFilterKey.MinFilter);
glSamplerParameteri(samplerHandle, GL_TEXTURE_MAG_FILTER, mSamplerFilterKey.MagFilter);
glSamplerParameteri(samplerHandle, GL_TEXTURE_WRAP_S, wrapMode[(int)mTextureUnit.WrapMode]);
glSamplerParameteri(samplerHandle, GL_TEXTURE_WRAP_T, wrapMode[(int)mTextureUnit.WrapMode]);
glSamplerParameteri(samplerHandle, GL_TEXTURE_WRAP_R, wrapMode[(int)mTextureUnit.WrapMode]);
if (mSamplerFilterKey.MaxAnisotropy > 0.0f)
glSamplerParameterf(samplerHandle, GL_TEXTURE_MAX_ANISOTROPY_EXT, mSamplerFilterKey.MaxAnisotropy);
}
if (mTextureUnit.SamplerHandle != samplerHandle)
{
mTextureUnit.SamplerHandle = samplerHandle;
glBindSampler(0, samplerHandle);
}
}
else
{
glBindTexture(GL_TEXTURE_2D, 0);
}
mTexturesChanged = false;
return CheckGLError();
}
std::mutex& GLRenderDevice::GetMutex()
{
static std::mutex m;
return m;
}
void GLRenderDevice::DeleteObject(GLVertexBuffer* buffer)
{
std::unique_lock<std::mutex> lock(GLRenderDevice::GetMutex());
if (buffer->Device)
buffer->Device->mDeleteList.VertexBuffers.push_back(buffer);
else
delete buffer;
}
void GLRenderDevice::DeleteObject(GLIndexBuffer* buffer)
{
std::unique_lock<std::mutex> lock(GLRenderDevice::GetMutex());
if (buffer->Device)
buffer->Device->mDeleteList.IndexBuffers.push_back(buffer);
else
delete buffer;
}
void GLRenderDevice::DeleteObject(GLTexture* texture)
{
std::unique_lock<std::mutex> lock(GLRenderDevice::GetMutex());
if (texture->Device)
texture->Device->mDeleteList.Textures.push_back(texture);
else
delete texture;
}
2019-12-26 00:09:31 +00:00
void GLRenderDevice::ProcessDeleteList(bool finalize)
{
std::unique_lock<std::mutex> lock(GLRenderDevice::GetMutex());
2019-12-26 00:09:31 +00:00
if (!finalize)
{
for (auto buffer : mDeleteList.IndexBuffers) delete buffer;
for (auto buffer : mDeleteList.VertexBuffers) delete buffer;
for (auto texture : mDeleteList.Textures) delete texture;
}
else
{
for (auto buffer : mDeleteList.IndexBuffers) buffer->Finalize();
for (auto buffer : mDeleteList.VertexBuffers) buffer->Finalize();
for (auto texture : mDeleteList.Textures) texture->Finalize();
}
mDeleteList.IndexBuffers.clear();
mDeleteList.VertexBuffers.clear();
mDeleteList.Textures.clear();
}