They're currently just stubs, but this gets the render info loading
working without any errors. The next step is to connect up pipelines and
create the image resources, then implementing the task functions will
have meaning.
This gets an empty (no tasks or pipelines connected) render context
initialized and available for other subsystems to register their task
functions. Nothing is using it yet, but the test parse of rp_main_def
fails gracefully (needs those tasks).
The goal is to get vulkan relying on the "renderpass" abstraction, but
this gets vulkan up and running again, and even fixes the rendering
issues (in the end, getting canvas working wasn't required, but is still
planned).
This is a bit of a hack to allow me to work on vulkan's screen update
"pipeline" without having to mess with the other renderers, since it
turns out they're (currently) fundamentally incompatible.
The pic is scaled to fill the specified rect (then clipped to the
screen (effectively)). Done just for the console background for now, but
it will be used for slice-pics as well.
Not implemented for vulkan yet as I'm still thinking about the
descriptor management needed for the instanced rendering.
Making the conback rendering conditional gave an approximately 3% speed
boost to glsl with the GL stub (~12200fps to ~12550fps), for either
conback render method.
While Draw_Glyph does draw only one glyph at a time, it doesn't shape
the text every time, so is a major win for performance (especially
coupled with pre-shaped text).
Font and text handling is very much part of user interface and at least
partially independent of rendering, but does fit it better with GUI than
genera UI (ie, both graphics and text mode), thus libQFgui as well as
libQFui are built in the ui directory.
The existing font related builtins have been moved into the ruamoko
client library.
It's a bit flaky for particles, especially at higher frame rates, but
that's due to supporting only 64 overlapping pixels. A reasonable
solution is probably switching to a priority heap for the "sort" and
upping the limit.
This splits up render pass creation so that the creation of the various
resources can be tailored to the needs of the actual render pass
sub-system. In addition, it gets window resizing mostly working (just
some problems with incorrect rendering).
Swap chain acquisition is part of final output handling. However, as the
correct frame buffers are required for the render passes, the
acquisition needs to be performed during the preoutput render pass.
Window resize is still broken, but this is a big step towards fixing it.
When working, this will handle the output to the swap-chain images and
any final post-processing effects (gamma correction, screen scaling,
etc). However, currently the screen is just black because the image
for getting the main render pass output isn't hooked up yet.
Now each (high level) render pass can have its own frame buffer. The
current goal is to get the final output render pass to just transfer the
composed output to the swap chain image, potentially with scaling (my
laptop might be able to cope).
It seemed like a good idea at the time, but it exacerbates pixel leakage
in atlas textures that have no border pixels (even in nearest sampling
modes).
It turns out my approach to alias skin coloring just doesn't work for
the quake data due to the color curves not having a linear relationship,
especially the bottom colors.
Currently only for gl/glsl/vulkan. However, rather than futzing with
con_width and con_height (and trying to guess good values), con_scale
(currently an integer) gives consistent pixel scaling regardless of
window size.
I had missed that vkCmdCopyImage requires the source and destination
images to have exactly the same size, and I guess assumed that the
swapchain images would always be the size they said they were, but this
is not the case for tiled-optimal images. However,
vkCmdCopyImageToBuffer does the right thing regardless of the source
image size.
This fixes the skewed screenshots when the window size is not a multiple
of 8 (for me, might differ for others).
There's a problem with screenshot capture in that the image is sheared
after window resize, but the screen view looks good, and vulkan is happy
with the state changes.
I've found and mostly isolated the parts of the code that will be
affected by window resizing, minus pipelines but they use dynamic
viewport and scissor settings and thus shouldn't be affected so long as
the swapchain format doesn't change (how does that happen?)
Finally, the model_funcs and render_funcs struts use designated
initializers. Not only are they good for ensuring correct
initialization, they're great for the programmer finding the right
initializer.
Sounds odd, but it's part of the problem with calling two different
things with essentially the same name. The "high level" render pass in
question may be a compute pass, or a complex series of (Vulkan) render
passes and so won't create a Vulkan render pass for the "high level"
render pass (I do need to come up with a better name for it).
I really don't remember why I made it separate, though it may have been
to do with r_ent_queue. However, putting it together with the rest is
needed for the "render pass" rework.
It now lives in vulkan_renderpass.c and takes most of its parameters
from plist configs (just the name (which is used to find the config),
output spec, and draw function from C). Even the debug colors and names
are taken from the config.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
This breaks console scaling for now (con_width and con_height are gone),
but is a major step towards window resize support as console stuff
should never have been in viddef_t in the first place.
The client screen init code now sets up a screen view (actually the
renderer's scr_view) that is passed to the client console so it can know
the size of the screen. The same view is used by the status bar code.
Also, the ram/cache/paused icon drawing is moved into the client screen
update code. A bit of duplication, but I do plan on merging that
eventually.
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.
It's implemented only in the Vulkan renderer, partly because there's a
lot of experimenting going on with it, but the glyphs do get transferred
to the GPU (checked in render doc). No rendering is done yet: still
thinking about whether to do a quick-and-dirty test, or to add HarfBuzz
immediately, and the design surrounding that.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
This allows the use of an entity id to index into the entity data and
fetch the transform and colormod data in the vertex shader, thus making
instanced rendering possible. Non-world brush entities are still not
rendered, but the world entity is using both the entity data buffer and
entid buffer.
Since the staging buffer allocates the command buffers it uses, it
needs to free them when it is freed. I think I was confused by the
validation layers not complaining about unfreed buffers when shutting
down, but that's because destroying the pool (during program shutdown,
when the validation layers would complain) frees all the buffers. Thus,
due to staging buffers being created and destroyed during the level load
process, (rather large) command buffers were piling up like imps in a
Doom level.
In the process, it was necessary to rearrange some of the shutdown code
because vulkan_vid_render_shutdown destroys the shared command pool, but
the pool is required for freeing the command buffers, but there was a
minor mess of long-lived staging buffers being freed afterwards. That
didn't end particularly well.
The bones aren't animated yet (and I realized I made the mistake of
thinking the bone buffer was per-model when it's really per-instance (I
think this mistake is in the rest of QF, too)), skin rendering is a
mess, need to default vertex attributes that aren't in the model...
Still, it's quite satisfying seeing Mr Fixit on screen again :)
I wound up moving the pipeline spec in with the rest of the pipelines as
the system isn't really ready for separating them.
This replaces *_NewMap with *_NewScene and adds SCR_NewScene to handle
loading a new map (for quake) in the renderer, and will eventually be
how any new scene is loaded.
Id Software had pretty much nothing to do with the vulkan renderer (they
still get credit for code that's heavily based on the original quake
code, of course).