I'm not sure what I was thinking when I made PL_RemoveObjectForKey take
a const plitem. One of those times where C could do with being a little
more strict.
I think this bug has been haunting us since we introduced lerping. I do
remember chasing bad pose indices 20 years ago and never finding the
cause. I guess we never thought to check the view model.
I don't know if cygwin itself is even relevant these days, but any of
our docs for it are way out of date anyway. Also, as github takes any
old readme as the repository documentation, it's not the best candidate.
While using barriers is a zillion times better than actually grabbing
the mouse and keyboard, they're still a pain when debugging as qf is not
able to respond to the barrier-hit events. All the other logic is still
there so even when "grabbing", the mouse will not be blocked if the
window doesn't have focus.
The stack is arbitrary strings that the validation layer debug callback
prints in reverse order after each message. This makes it easy to work
out what nodes in a pipeline/render pass plist are causing validation
errors. Still have to narrow down the actual line, but the messages seem
to help with that.
Putting qfvPushDebug/qfvPopDebug around other calls to vulkan should
help out a lot, tool.
As a bonus, the stack is printed before debug_breakpoint is called, so
it's immediately visible in gdb.
Rather than just 0/1, it now acts as flags to control what messages are
printed. In addition to the Vulkan enum names (long and short), none and
all are supported (as well as raw numbers, but they're not checked for
validity). This makes vulkan_use_validation a bit easier to use and less
verbose by default.
Now, if only it was easier to remember the name :P
Id's binding of escape to togglemenu interfered with the hard-coding
(want escape to togglemenu (or console as a fallback) no matter what).
This idea was part of mercury's original design, too.
I'm not at all happy with con_message and con_menu, but fixing them
properly will take a rework of the menus (planned, though). Also, the
Menu_ console command implementations are a bit iffy and could also do
with a rewrite (probably part of the rest of the menu rework) or just
nuking (they were part of Johnny on Flame's work, so I suspect had
something to do with joystick bindings).
It seems X11 does not like creating barriers entirely off the screen,
though the error seems to be a little unreliable (however, off the left
edge was definitely bad).
An imt switcher automatically changes the context's active imt based on
a user specified list of binary inputs. The inputs may be either buttons
(indicated as +button) or cvars (bare name). For buttons, the
pressed/not pressed state is used, and cvars are interpreted as ints
being 0 or not 0. The order of the inputs determines the bit number of
the input, with the first input being bit 0, second bit 1, third bit 2
etc. A default imt is given so large switchers do not need to be fully
configured (the default imt is written to all states).
A context can have any number of switchers attached. The switchers can
wind up fighting over the active imt, but this seems to be something for
the "user" (eg, configuration system) to sort out rather than the
switcher code enforcing anything.
As a result of the inputs being treated as bits, a switcher with N
inputs will have 2**N states, thus there's a maximum of 16 inputs for
now as 65536 states is a lot of configuration.
Using a switcher, setting up a standard strafe/mouse look configuration
is fairly easy.
imt_create key_game imt_mod
imt_create key_game imt_mod_strafe imt_mod
imt_create key_game imt_mod_freelook
imt_create key_game imt_mod_lookstrafe imt_mod_freelook
imt_switcher_create mouse key_game imt_mod_strafe +strafe lookstrafe +mlook freelook
imt_switcher 0 imt_mod 2 imt_mod 4 imt_mod_freelook 8 imt_mod_freelook 12 imt_mod_freelook
imt_switcher 6 imt_mod_lookstrafe 10 imt_mod_lookstrafe 14 imt_mod_lookstrafe
in_bind imt_mod mouse axis 0 move.yaw
in_bind imt_mod mouse axis 1 move.forward
in_bind imt_mod_strafe mouse axis 0 move.side
in_bind imt_mod_lookstrafe mouse axis 0 move.side
in_bind imt_mod_freelook mouse axis 1 move.pitch
This takes advantage of imt chaining and the default imt for the
switcher (there are 8 states that use imt_mod_strafe).
The switcher name must be unique across all contexts, and every imt used
in a switcher must be in the switcher's context.
The listener is invoked when the axis value changes due to IN_UpdateAxis
or IN_ClampAxis updating the axis. This does mean the listener
invocation make be somewhat delayed. I am a tad uncertain about this
design thus it being a separate commit.
Listeners are separate to the main callback as listeners have only
read-only access to the objects, but the main callback is free to modify
the cvar and thus can act as a parser and validator. The listeners are
invoked after the main callback if the cvar is modified. There does not
need to be a main callback for the listeners to be invoked.
This allows id1/qw config files, and to a certain extent scripts, to
work with the new binding system. It does highlight just how limited the
original system was (many keys could not bound).
Mouse axis input does not work yet as that needs a little more work to
support +strafe and +mlook.
I had forgotten that Cmd_Args() preserves quotes, which resulted in
button bindings having excess quotes when used to bind complex commands
(eg, the default quicksave and quickload bindings).
I decided cvars and input buttons/axes need listeners so any changes to
them can be propagated. This will make using cvars in bindings feasible
and I have an idea for automatic imt switching that would benefit from
listeners attached to buttons and cvars.
For now, only the first two axis (mouse X and Y) are supported (XInput
treats the scroll wheel events as axes too, so mice have up to 4!), but
most importantly, this prevents the scroll wheel from being seen as the
X axis. Oops.
It turns out accumulate is not really suitable now that relative axis
accumulation is done in the binding processing, and was never suitable
for absolute inputs (in this context, of course: there are contexts
where accumulate is suitable for absolute inputs).
Combining absolute and relative inputs at the binding does not work well
because absolute inputs generally update only when the physical input
updates, so clearing the axis input each frame results in a brief pulse
from the physical input, but relative inputs must be cleared each frame
(where frame here is each time the axis is read) but must accumulate the
relative updates between frames.
Other than the axis mode being incorrect, this seems to work quite
nicely.
With the old headers removed, X11_SetGamma became a stub and gcc
complained about it wanting the const attribute. On investigation, it
turned out the X_XF86VidModeSetGamma was a holdover from the initial
implementation of hardware gamma support.
UI key presses are still handled by regular X events, but in-game
"button" presses arrive via raw keyboard events. This gives transparent
handling of keyboard repeat (UI keys see repeat, game keys do not),
without messing with the server's settings (yay, that was most annoying
when it came to debugging), and the keyboard is never grabbed, so this
is a fairly user-friendly setup.
At first, I wasn't too keen on capturing them from the root window
(thinking about the user's security), but after a lot of investigation,
I found a post by Peter Hutterer
(http://who-t.blogspot.com/2011/09/whats-new-in-xi-21-raw-events.html)
commenting that root window events were added to XInput2 specifically
for games. Since application focus is tracked and unfocused key events
are dropped very early on, there's no way for code further down the
food-chain to know there even was an event, abusing the access would
require modifying the x11 input code, in which case all bets are off
anyway and any attempt at security anywhere in the code will fail,
meaning that nefarious progs code and the like shouldn't be a problem.
After a lot of thought, it really doesn't make sense to have an option
to block mouse input in x11 (not grabbing or similar does make sense, of
course). Not initializing mouse input made perfect sense in DOS and even
console Linux (SVGA) what with the low level access.
It turns out that if the barriers are set on the app window, and the app
grabs the pointer (even passively), barrier events will no longer be
sent to the app. However, creating the barriers on the root window and
the events are selected on the root window, the barrier events are sent
regardless of the grab state.
The kernel knows nothing about X11 application focus, so we need to take
care of it ourselves.
Device add/remove events are unaffected: the are always passed on.
Other subsystems, especially low-level input drivers, need to know when
the app has input focus. eg, as the evdev driver uses the raw stream
from the kernel, which has no idea about X application focus (in fact,
it seems the events are shared across multiple apps without any issue),
the evdev driver sees all the events thus needs to know when to drop
them.