quakespasm/Quake/gl_rlight.c

745 lines
20 KiB
C
Raw Normal View History

/*
Copyright (C) 1996-2001 Id Software, Inc.
Copyright (C) 2002-2009 John Fitzgibbons and others
Copyright (C) 2010-2014 QuakeSpasm developers
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_light.c
#include "quakedef.h"
int r_dlightframecount;
extern cvar_t r_flatlightstyles; //johnfitz
//Spike - made this a general function
void CL_UpdateLightstyle(unsigned int idx, const char *str)
{
int total;
int j;
if (idx < MAX_LIGHTSTYLES)
{
q_strlcpy (cl_lightstyle[idx].map, str, MAX_STYLESTRING);
cl_lightstyle[idx].length = Q_strlen(cl_lightstyle[idx].map);
//johnfitz -- save extra info
if (cl_lightstyle[idx].length)
{
total = 0;
cl_lightstyle[idx].peak = 'a';
for (j=0; j<cl_lightstyle[idx].length; j++)
{
total += cl_lightstyle[idx].map[j] - 'a';
cl_lightstyle[idx].peak = q_max(cl_lightstyle[idx].peak, cl_lightstyle[idx].map[j]);
}
cl_lightstyle[idx].average = total / cl_lightstyle[idx].length + 'a';
}
else
cl_lightstyle[idx].average = cl_lightstyle[idx].peak = 'm';
//johnfitz
}
}
/*
==================
R_AnimateLight
==================
*/
void R_AnimateLight (void)
{
int i,j,k;
//
// light animations
// 'm' is normal light, 'a' is no light, 'z' is double bright
i = (int)(cl.time*10);
for (j=0 ; j<MAX_LIGHTSTYLES ; j++)
{
if (!cl_lightstyle[j].length)
{
d_lightstylevalue[j] = 256;
continue;
}
//johnfitz -- r_flatlightstyles
if (r_flatlightstyles.value == 2)
k = cl_lightstyle[j].peak - 'a';
else if (r_flatlightstyles.value == 1)
k = cl_lightstyle[j].average - 'a';
else
{
k = i % cl_lightstyle[j].length;
k = cl_lightstyle[j].map[k] - 'a';
}
d_lightstylevalue[j] = k*22;
//johnfitz
}
}
/*
=============================================================================
DYNAMIC LIGHTS BLEND RENDERING (gl_flashblend 1)
=============================================================================
*/
void AddLightBlend (float r, float g, float b, float a2)
{
float a;
v_blend[3] = a = v_blend[3] + a2*(1-v_blend[3]);
a2 = a2/a;
v_blend[0] = v_blend[1]*(1-a2) + r*a2;
v_blend[1] = v_blend[1]*(1-a2) + g*a2;
v_blend[2] = v_blend[2]*(1-a2) + b*a2;
}
void R_RenderDlight (dlight_t *light)
{
int i, j;
float a;
vec3_t v;
float rad;
rad = light->radius * 0.35;
VectorSubtract (light->origin, r_origin, v);
if (VectorLength (v) < rad)
{ // view is inside the dlight
if (light->color[0]==1 && light->color[1]==1 && light->color[2]==1)
AddLightBlend (1.0, 0.5, 0.0, light->radius * 0.0003);
else
AddLightBlend (light->color[0], light->color[1], light->color[2], light->radius * 0.0003);
return;
}
glBegin (GL_TRIANGLE_FAN);
if (light->color[0]==1 && light->color[1]==1 && light->color[2]==1) //if its default full-white, show it with an orange tint instead to replicate expected QS behaviour without breaking coloured dlights.
glColor3f (0.2f, 0.1f, 0.0);
else
glColor3f (light->color[0]*.2f, light->color[1]*.2f, light->color[2]*.2f);
for (i=0 ; i<3 ; i++)
v[i] = light->origin[i] - vpn[i]*rad;
glVertex3fv (v);
glColor3f (0,0,0);
for (i=16 ; i>=0 ; i--)
{
a = i/16.0 * M_PI*2;
for (j=0 ; j<3 ; j++)
v[j] = light->origin[j] + vright[j]*cos(a)*rad
+ vup[j]*sin(a)*rad;
glVertex3fv (v);
}
glEnd ();
}
/*
=============
R_RenderDlights
=============
*/
void R_RenderDlights (void)
{
int i;
dlight_t *l;
if (!gl_flashblend.value)
return;
r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
glDepthMask (0);
glDisable (GL_TEXTURE_2D);
glShadeModel (GL_SMOOTH);
glEnable (GL_BLEND);
glBlendFunc (GL_ONE, GL_ONE);
l = cl_dlights;
for (i=0 ; i<MAX_DLIGHTS ; i++, l++)
{
if (l->die < cl.time || !l->radius)
continue;
R_RenderDlight (l);
}
glColor3f (1,1,1);
glDisable (GL_BLEND);
glEnable (GL_TEXTURE_2D);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask (1);
}
/*
=============================================================================
DYNAMIC LIGHTS
=============================================================================
*/
/*
=============
R_MarkLights -- johnfitz -- rewritten to use LordHavoc's lighting speedup
=============
*/
void R_MarkLights (dlight_t *light, vec3_t lightorg, int num, mnode_t *node)
{
mplane_t *splitplane;
msurface_t *surf;
vec3_t impact;
float dist, l, maxdist;
unsigned int i;
int j, s, t;
start:
if (node->contents < 0)
return;
splitplane = node->plane;
if (splitplane->type < 3)
dist = lightorg[splitplane->type] - splitplane->dist;
else
dist = DotProduct (lightorg, splitplane->normal) - splitplane->dist;
if (dist > light->radius)
{
node = node->children[0];
goto start;
}
if (dist < -light->radius)
{
node = node->children[1];
goto start;
}
maxdist = light->radius*light->radius;
// mark the polygons
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
for (j=0 ; j<3 ; j++)
impact[j] = lightorg[j] - surf->plane->normal[j]*dist;
// clamp center of light to corner and check brightness
2023-11-02 23:18:42 +00:00
l = DotProduct (impact, surf->lmvecs[0]) + surf->lmvecs[0][3];
s = l;if (s < 0) s = 0;else if (s > surf->extents[0]) s = surf->extents[0];
s = l - s;
2023-11-02 23:18:42 +00:00
l = DotProduct (impact, surf->lmvecs[1]) + surf->lmvecs[1][3];
t = l;if (t < 0) t = 0;else if (t > surf->extents[1]) t = surf->extents[1];
t = l - t;
// compare to minimum light
if ((s*s+t*t+dist*dist) < maxdist)
{
if (surf->dlightframe != r_dlightframecount) // not dynamic until now
{
surf->dlightbits[num >> 5] = 1U << (num & 31);
surf->dlightframe = r_dlightframecount;
}
else // already dynamic
surf->dlightbits[num >> 5] |= 1U << (num & 31);
}
}
if (node->children[0]->contents >= 0)
R_MarkLights (light, lightorg, num, node->children[0]);
if (node->children[1]->contents >= 0)
R_MarkLights (light, lightorg, num, node->children[1]);
}
/*
=============
R_PushDlights
=============
*/
void R_PushDlights (void)
{
int i;
dlight_t *l;
if (gl_flashblend.value)
return;
r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
if (!r_refdef.drawworld)
return;
l = cl_dlights;
for (i=0 ; i<MAX_DLIGHTS ; i++, l++)
{
if (l->die < cl.time || !l->radius)
continue;
R_MarkLights (l, l->origin, i, cl.worldmodel->nodes);
}
}
/*
=============================================================================
BSPX LIGHTGRID LOADING + SAMPLING
=============================================================================
*/
extern char loadname[]; // for hunk tags. yuck yuck yuck.
extern cvar_t mod_lightgrid; //for testing/debugging
typedef struct
{
vec3_t gridscale;
unsigned int count[3];
vec3_t mins;
unsigned int styles;
unsigned int rootnode;
unsigned int numnodes;
struct bspxlgnode_s
{ //this uses an octtree to trim samples.
int mid[3];
unsigned int child[8];
#define LGNODE_LEAF (1u<<31)
#define LGNODE_MISSING (1u<<30)
} *nodes;
unsigned int numleafs;
struct bspxlgleaf_s
{
int mins[3];
int size[3];
struct bspxlgsamp_s
{
struct
{
byte style;
byte rgb[3];
} map[4];
} *rgbvalues;
} *leafs;
} bspxlightgrid_t;
struct rctx_s {byte *data; int ofs, size;};
static byte ReadByte(struct rctx_s *ctx)
{
if (ctx->ofs >= ctx->size)
{
ctx->ofs++;
return 0;
}
return ctx->data[ctx->ofs++];
}
static int ReadInt(struct rctx_s *ctx)
{
int r = (int)ReadByte(ctx)<<0;
r|= (int)ReadByte(ctx)<<8;
r|= (int)ReadByte(ctx)<<16;
r|= (int)ReadByte(ctx)<<24;
return r;
}
static float ReadFloat(struct rctx_s *ctx)
{
union {float f; int i;} u;
u.i = ReadInt(ctx);
return u.f;
}
void BSPX_LightGridLoad(qmodel_t *model, void *lgdata, size_t lgsize)
{
vec3_t step, mins;
int size[3];
bspxlightgrid_t *grid;
unsigned int numstyles, numnodes, numleafs, rootnode;
unsigned int nodestart, leafsamps = 0, i, j, k, s;
struct bspxlgsamp_s *samp;
struct rctx_s ctx = {0};
ctx.data = lgdata;
ctx.size = lgsize;
model->lightgrid = NULL;
if (!ctx.data)
return;
for (j = 0; j < 3; j++)
step[j] = ReadFloat(&ctx);
for (j = 0; j < 3; j++)
size[j] = ReadInt(&ctx);
for (j = 0; j < 3; j++)
mins[j] = ReadFloat(&ctx);
numstyles = ReadByte(&ctx); //urgh, misaligned the entire thing
rootnode = ReadInt(&ctx);
numnodes = ReadInt(&ctx);
nodestart = ctx.ofs;
ctx.ofs += (3+8)*4*numnodes;
numleafs = ReadInt(&ctx);
for (i = 0; i < numleafs; i++)
{
unsigned int lsz[3];
ctx.ofs += 3*4;
for (j = 0; j < 3; j++)
lsz[j] = ReadInt(&ctx);
j = lsz[0]*lsz[1]*lsz[2];
leafsamps += j;
while (j --> 0)
{ //this loop is annonying, memcpy dreams...
s = ReadByte(&ctx);
if (s == 255)
continue;
ctx.ofs += s*4;
}
}
grid = Hunk_AllocName(sizeof(*grid) + sizeof(*grid->leafs)*numleafs + sizeof(*grid->nodes)*numnodes + sizeof(struct bspxlgsamp_s)*leafsamps, loadname);
// memset(grid, 0xcc, sizeof(*grid) + sizeof(*grid->leafs)*numleafs + sizeof(*grid->nodes)*numnodes + sizeof(struct bspxlgsamp_s)*leafsamps);
grid->leafs = (void*)(grid+1);
grid->nodes = (void*)(grid->leafs + numleafs);
samp = (void*)(grid->nodes+numnodes);
for (j = 0; j < 3; j++)
grid->gridscale[j] = 1/step[j]; //prefer it as a multiply
VectorCopy(mins, grid->mins);
VectorCopy(size, grid->count);
grid->numnodes = numnodes;
grid->numleafs = numleafs;
grid->rootnode = rootnode;
(void)numstyles;
//rewind to the nodes. *sigh*
ctx.ofs = nodestart;
for (i = 0; i < numnodes; i++)
{
for (j = 0; j < 3; j++)
grid->nodes[i].mid[j] = ReadInt(&ctx);
for (j = 0; j < 8; j++)
grid->nodes[i].child[j] = ReadInt(&ctx);
}
ctx.ofs += 4;
for (i = 0; i < numleafs; i++)
{
for (j = 0; j < 3; j++)
grid->leafs[i].mins[j] = ReadInt(&ctx);
for (j = 0; j < 3; j++)
grid->leafs[i].size[j] = ReadInt(&ctx);
grid->leafs[i].rgbvalues = samp;
j = grid->leafs[i].size[0]*grid->leafs[i].size[1]*grid->leafs[i].size[2];
while (j --> 0)
{
s = ReadByte(&ctx);
if (s == 0xff)
memset(samp, 0xff, sizeof(*samp));
else
{
for (k = 0; k < s; k++)
{
if (k >= 4)
ReadInt(&ctx);
else
{
samp->map[k].style = ReadByte(&ctx);
samp->map[k].rgb[0] = ReadByte(&ctx);
samp->map[k].rgb[1] = ReadByte(&ctx);
samp->map[k].rgb[2] = ReadByte(&ctx);
}
}
for (; k < 4; k++)
{
samp->map[k].style = (byte)~0u;
samp->map[k].rgb[0] =
samp->map[k].rgb[1] =
samp->map[k].rgb[2] = 0;
}
}
samp++;
}
}
if (ctx.ofs != ctx.size)
grid = NULL;
model->lightgrid = (void*)grid;
}
static int BSPX_LightGridSingleValue(bspxlightgrid_t *grid, int x, int y, int z, float w, vec3_t res_diffuse)
{
int i;
unsigned int node;
struct bspxlgsamp_s *samp;
float lev;
node = grid->rootnode;
while (!(node & LGNODE_LEAF))
{
struct bspxlgnode_s *n;
if (node & LGNODE_MISSING)
return 0; //failure
n = grid->nodes + node;
node = n->child[
((x>=n->mid[0])<<2)|
((y>=n->mid[1])<<1)|
((z>=n->mid[2])<<0)];
}
{
struct bspxlgleaf_s *leaf = &grid->leafs[node & ~LGNODE_LEAF];
x -= leaf->mins[0];
y -= leaf->mins[1];
z -= leaf->mins[2];
if (x >= leaf->size[0] ||
y >= leaf->size[1] ||
z >= leaf->size[2])
return 0; //sample we're after is out of bounds...
i = x + leaf->size[0]*(y + leaf->size[1]*z);
samp = leaf->rgbvalues + i;
w *= (1/256.0);
//no hdr support
for (i = 0; i < countof(samp->map); i++)
{
if (samp->map[i].style == ((byte)(~0u)))
break; //no more
lev = d_lightstylevalue[samp->map[i].style]*w;
res_diffuse[0] += samp->map[i].rgb[0] * lev;
res_diffuse[1] += samp->map[i].rgb[1] * lev;
res_diffuse[2] += samp->map[i].rgb[2] * lev;
}
}
return 1;
}
static void BSPX_LightGridValue(bspxlightgrid_t *grid, const vec3_t point, vec3_t res_diffuse)
{
int i, tile[3];
float s, w. frac[3];
res_diffuse[0] = res_diffuse[1] = res_diffuse[2] = 0; //assume worst
for (i = 0; i < 3; i++)
{
tile[i] = floor((point[i] - grid->mins[i]) * grid->gridscale[i]);
frac[i] = (point[i] - grid->mins[i]) * grid->gridscale[i] - tile[i];
}
for (i = 0, s = 0; i < 8; i++)
{
w = ((i&1)?frac[0]:1-frac[0])
* ((i&2)?frac[1]:1-frac[1])
* ((i&4)?frac[2]:1-frac[2]);
s += w*BSPX_LightGridSingleValue(grid, tile[0]+!!(i&1),
tile[1]+!!(i&2),
tile[2]+!!(i&4), w, res_diffuse);
}
if (s)
VectorScale(res_diffuse, 1.0/s, res_diffuse); //average the successful ones
}
/*
=============================================================================
LEGACY LIGHT SAMPLING
=============================================================================
*/
mplane_t *lightplane;
vec3_t lightspot;
vec3_t lightcolor; //johnfitz -- lit support via lordhavoc
/*
=============
RecursiveLightPoint -- johnfitz -- replaced entire function for lit support via lordhavoc
=============
*/
int RecursiveLightPoint (vec3_t color, mnode_t *node, vec3_t rayorg, vec3_t start, vec3_t end, float *maxdist)
{
float front, back, frac;
vec3_t mid;
loc0:
if (node->contents < 0)
return false; // didn't hit anything
// calculate mid point
if (node->plane->type < 3)
{
front = start[node->plane->type] - node->plane->dist;
back = end[node->plane->type] - node->plane->dist;
}
else
{
front = DotProduct(start, node->plane->normal) - node->plane->dist;
back = DotProduct(end, node->plane->normal) - node->plane->dist;
}
// LordHavoc: optimized recursion
if ((back < 0) == (front < 0))
// return RecursiveLightPoint (color, node->children[front < 0], rayorg, start, end, maxdist);
{
node = node->children[front < 0];
goto loc0;
}
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
if (RecursiveLightPoint (color, node->children[front < 0], rayorg, start, mid, maxdist))
return true; // hit something
else
{
unsigned int i;
int ds, dt;
msurface_t *surf;
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = node->plane;
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i = 0;i < node->numsurfaces;i++, surf++)
{
float sfront, sback, dist;
vec3_t raydelta;
2023-11-02 23:18:42 +00:00
double dsfrac, dtfrac;
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
// ericw -- added double casts to force 64-bit precision.
// Without them the zombie at the start of jam3_ericw.bsp was
// incorrectly being lit up in SSE builds.
2023-11-02 23:18:42 +00:00
dsfrac = DoublePrecisionDotProduct (mid, surf->lmvecs[0]) + surf->lmvecs[0][3];
dtfrac = DoublePrecisionDotProduct (mid, surf->lmvecs[1]) + surf->lmvecs[1][3];
if (dsfrac < 0 || dtfrac < 0)
continue;
2023-11-02 23:18:42 +00:00
if (dsfrac > surf->extents[0] || dtfrac > surf->extents[1])
continue;
2023-11-02 23:18:42 +00:00
ds = dsfrac;
dt = dtfrac;
dsfrac -= ds;
dtfrac -= dt;
if (surf->plane->type < 3)
{
sfront = rayorg[surf->plane->type] - surf->plane->dist;
sback = end[surf->plane->type] - surf->plane->dist;
}
else
{
sfront = DotProduct(rayorg, surf->plane->normal) - surf->plane->dist;
sback = DotProduct(end, surf->plane->normal) - surf->plane->dist;
}
VectorSubtract(end, rayorg, raydelta);
dist = sfront / (sfront - sback) * VectorLength(raydelta);
if (!surf->samples)
{
// We hit a surface that is flagged as lightmapped, but doesn't have actual lightmap info.
// Instead of just returning black, we'll keep looking for nearby surfaces that do have valid samples.
// This fixes occasional pitch-black models in otherwise well-lit areas in DOTM (e.g. mge1m1, mge4m1)
// caused by overlapping surfaces with mixed lighting data.
const float nearby = 8.f;
dist += nearby;
*maxdist = q_min(*maxdist, dist);
continue;
}
if (dist < *maxdist)
{
// LordHavoc: enhanced to interpolate lighting
2023-11-02 23:18:42 +00:00
int maps, line3, r00 = 0, g00 = 0, b00 = 0, r01 = 0, g01 = 0, b01 = 0, r10 = 0, g10 = 0, b10 = 0, r11 = 0, g11 = 0, b11 = 0;
float scale, e;
if (cl.worldmodel->flags & MOD_HDRLIGHTING)
{
static const float rgb9e5tab[32] = { //multipliers for the 9-bit mantissa, according to the biased mantissa
//aka: pow(2, biasedexponent - bias-bits) where bias is 15 and bits is 9
1.0/(1<<24), 1.0/(1<<23), 1.0/(1<<22), 1.0/(1<<21), 1.0/(1<<20), 1.0/(1<<19), 1.0/(1<<18), 1.0/(1<<17),
1.0/(1<<16), 1.0/(1<<15), 1.0/(1<<14), 1.0/(1<<13), 1.0/(1<<12), 1.0/(1<<11), 1.0/(1<<10), 1.0/(1<<9),
1.0/(1<<8), 1.0/(1<<7), 1.0/(1<<6), 1.0/(1<<5), 1.0/(1<<4), 1.0/(1<<3), 1.0/(1<<2), 1.0/(1<<1),
1.0, 1.0*(1<<1), 1.0*(1<<2), 1.0*(1<<3), 1.0*(1<<4), 1.0*(1<<5), 1.0*(1<<6), 1.0*(1<<7),
};
2023-11-02 23:18:42 +00:00
uint32_t *lightmap = (uint32_t*)surf->samples + (dt * (surf->extents[0]+1) + ds);
line3 = (surf->extents[0]+1);
for (maps = 0;maps < MAXLIGHTMAPS && surf->styles[maps] != INVALID_LIGHTSTYLE;maps++)
{
scale = (1<<7) * (float) d_lightstylevalue[surf->styles[maps]] * 1.0f / 256.0f;
e = rgb9e5tab[lightmap[ 0]>>27] * scale;r00 += ((lightmap[ 0]>> 0)&0x1ff) * e;g00 += ((lightmap[ 0]>> 9)&0x1ff) * e;b00 += ((lightmap[ 0]>> 9)&0x1ff) * e;
e = rgb9e5tab[lightmap[ 1]>>27] * scale;r01 += ((lightmap[ 1]>> 0)&0x1ff) * e;g01 += ((lightmap[ 1]>> 9)&0x1ff) * e;b01 += ((lightmap[ 1]>> 9)&0x1ff) * e;
e = rgb9e5tab[lightmap[line3+0]>>27] * scale;r10 += ((lightmap[line3+0]>> 0)&0x1ff) * e;g10 += ((lightmap[line3+0]>> 9)&0x1ff) * e;b10 += ((lightmap[line3+0]>> 9)&0x1ff) * e;
e = rgb9e5tab[lightmap[line3+1]>>27] * scale;r11 += ((lightmap[line3+1]>> 0)&0x1ff) * e;g11 += ((lightmap[line3+1]>> 9)&0x1ff) * e;b11 += ((lightmap[line3+1]>> 9)&0x1ff) * e;
2023-11-02 23:18:42 +00:00
lightmap += (surf->extents[0]+1) * (surf->extents[1]+1);
}
}
else
{
2023-11-02 23:18:42 +00:00
byte *lightmap = (byte*)surf->samples + (dt * (surf->extents[0]+1) + ds)*3; // LordHavoc: *3 for color
line3 = (surf->extents[0]+1)*3;
for (maps = 0;maps < MAXLIGHTMAPS && surf->styles[maps] != INVALID_LIGHTSTYLE;maps++)
{
scale = (float) d_lightstylevalue[surf->styles[maps]] * 1.0f / 256.0f;
r00 += (float) lightmap[ 0] * scale;g00 += (float) lightmap[ 1] * scale;b00 += (float) lightmap[2] * scale;
r01 += (float) lightmap[ 3] * scale;g01 += (float) lightmap[ 4] * scale;b01 += (float) lightmap[5] * scale;
r10 += (float) lightmap[line3+0] * scale;g10 += (float) lightmap[line3+1] * scale;b10 += (float) lightmap[line3+2] * scale;
r11 += (float) lightmap[line3+3] * scale;g11 += (float) lightmap[line3+4] * scale;b11 += (float) lightmap[line3+5] * scale;
2023-11-02 23:18:42 +00:00
lightmap += (surf->extents[0]+1) * (surf->extents[1]+1)*3; // LordHavoc: *3 for colored lighting
}
}
2023-11-02 23:18:42 +00:00
color[0] += (float) ((int) ((((((r11-r10) * dsfrac) + r10)-(((r01-r00) * dsfrac) + r00)) * dtfrac) + (((r01-r00) * dsfrac) + r00)));
color[1] += (float) ((int) ((((((g11-g10) * dsfrac) + g10)-(((g01-g00) * dsfrac) + g00)) * dtfrac) + (((g01-g00) * dsfrac) + g00)));
color[2] += (float) ((int) ((((((b11-b10) * dsfrac) + b10)-(((b01-b00) * dsfrac) + b00)) * dtfrac) + (((b01-b00) * dsfrac) + b00)));
}
return true; // success
}
// go down back side
return RecursiveLightPoint (color, node->children[front >= 0], rayorg, mid, end, maxdist);
}
}
/*
=============
R_LightPoint -- johnfitz -- replaced entire function for lit support via lordhavoc
=============
*/
int R_LightPoint (vec3_t p)
{
vec3_t end;
float maxdist = 8192.f; //johnfitz -- was 2048
if (!cl.worldmodel->lightdata)
{
lightcolor[0] = lightcolor[1] = lightcolor[2] = 255;
return 255;
}
if (cl.worldmodel->lightgrid && mod_lightgrid.value)
BSPX_LightGridValue(cl.worldmodel->lightgrid, p, lightcolor);
else
{
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - maxdist;
lightcolor[0] = lightcolor[1] = lightcolor[2] = 0;
RecursiveLightPoint (lightcolor, cl.worldmodel->nodes, p, p, end, &maxdist);
}
return ((lightcolor[0] + lightcolor[1] + lightcolor[2]) * (1.0f / 3.0f));
}