raze/source/common/models/models_iqm.cpp

666 lines
18 KiB
C++
Raw Normal View History

#include "filesystem.h"
#include "cmdlib.h"
#include "model_iqm.h"
#include "texturemanager.h"
#include "modelrenderer.h"
#include "engineerrors.h"
#include "dobject.h"
#include "bonecomponents.h"
IMPLEMENT_CLASS(DBoneComponents, false, false);
IQMModel::IQMModel()
{
}
IQMModel::~IQMModel()
{
}
bool IQMModel::Load(const char* path, int lumpnum, const char* buffer, int length)
{
mLumpNum = lumpnum;
try
{
IQMFileReader reader(buffer, length);
char magic[16];
reader.Read(magic, 16);
if (memcmp(magic, "INTERQUAKEMODEL\0", 16) != 0)
return false;
uint32_t version = reader.ReadUInt32();
if (version != 2)
return false;
uint32_t filesize = reader.ReadUInt32();
uint32_t flags = reader.ReadUInt32();
uint32_t num_text = reader.ReadUInt32();
uint32_t ofs_text = reader.ReadUInt32();
uint32_t num_meshes = reader.ReadUInt32();
uint32_t ofs_meshes = reader.ReadUInt32();
uint32_t num_vertexarrays = reader.ReadUInt32();
uint32_t num_vertices = reader.ReadUInt32();
uint32_t ofs_vertexarrays = reader.ReadUInt32();
uint32_t num_triangles = reader.ReadUInt32();
uint32_t ofs_triangles = reader.ReadUInt32();
uint32_t ofs_adjacency = reader.ReadUInt32();
uint32_t num_joints = reader.ReadUInt32();
uint32_t ofs_joints = reader.ReadUInt32();
uint32_t num_poses = reader.ReadUInt32();
uint32_t ofs_poses = reader.ReadUInt32();
uint32_t num_anims = reader.ReadUInt32();
uint32_t ofs_anims = reader.ReadUInt32();
uint32_t num_frames = reader.ReadUInt32();
uint32_t num_framechannels = reader.ReadUInt32();
uint32_t ofs_frames = reader.ReadUInt32();
uint32_t ofs_bounds = reader.ReadUInt32();
uint32_t num_comment = reader.ReadUInt32();
uint32_t ofs_comment = reader.ReadUInt32();
uint32_t num_extensions = reader.ReadUInt32();
uint32_t ofs_extensions = reader.ReadUInt32();
if (num_text == 0)
return false;
TArray<char> text(num_text, true);
reader.SeekTo(ofs_text);
reader.Read(text.Data(), text.Size());
text[text.Size() - 1] = 0;
Meshes.Resize(num_meshes);
Triangles.Resize(num_triangles);
Adjacency.Resize(num_triangles);
Joints.Resize(num_joints);
Poses.Resize(num_poses);
Anims.Resize(num_anims);
Bounds.Resize(num_frames);
VertexArrays.Resize(num_vertexarrays);
NumVertices = num_vertices;
reader.SeekTo(ofs_meshes);
for (IQMMesh& mesh : Meshes)
{
mesh.Name = reader.ReadName(text);
mesh.Material = reader.ReadName(text);
mesh.FirstVertex = reader.ReadUInt32();
mesh.NumVertices = reader.ReadUInt32();
mesh.FirstTriangle = reader.ReadUInt32();
mesh.NumTriangles = reader.ReadUInt32();
mesh.Skin = LoadSkin(path, mesh.Material.GetChars());
}
reader.SeekTo(ofs_triangles);
for (IQMTriangle& triangle : Triangles)
{
triangle.Vertex[0] = reader.ReadUInt32();
triangle.Vertex[1] = reader.ReadUInt32();
triangle.Vertex[2] = reader.ReadUInt32();
}
reader.SeekTo(ofs_adjacency);
for (IQMAdjacency& adj : Adjacency)
{
adj.Triangle[0] = reader.ReadUInt32();
adj.Triangle[1] = reader.ReadUInt32();
adj.Triangle[2] = reader.ReadUInt32();
}
reader.SeekTo(ofs_joints);
for (IQMJoint& joint : Joints)
{
joint.Name = reader.ReadName(text);
joint.Parent = reader.ReadInt32();
joint.Translate.X = reader.ReadFloat();
joint.Translate.Y = reader.ReadFloat();
joint.Translate.Z = reader.ReadFloat();
joint.Quaternion.X = reader.ReadFloat();
joint.Quaternion.Y = reader.ReadFloat();
joint.Quaternion.Z = reader.ReadFloat();
joint.Quaternion.W = reader.ReadFloat();
joint.Quaternion.MakeUnit();
joint.Scale.X = reader.ReadFloat();
joint.Scale.Y = reader.ReadFloat();
joint.Scale.Z = reader.ReadFloat();
}
reader.SeekTo(ofs_poses);
for (IQMPose& pose : Poses)
{
pose.Parent = reader.ReadInt32();
pose.ChannelMask = reader.ReadUInt32();
for (int i = 0; i < 10; i++) pose.ChannelOffset[i] = reader.ReadFloat();
for (int i = 0; i < 10; i++) pose.ChannelScale[i] = reader.ReadFloat();
}
reader.SeekTo(ofs_anims);
for(unsigned i = 0; i < Anims.Size(); i++)
{
2023-12-10 12:30:50 +00:00
IQMAnim& anim = Anims[i];
anim.Name = reader.ReadName(text);
2023-12-10 12:30:50 +00:00
NamedAnimations.Insert(anim.Name, i);
anim.FirstFrame = reader.ReadUInt32();
anim.NumFrames = reader.ReadUInt32();
anim.Framerate = reader.ReadFloat();
anim.Loop = !!(reader.ReadUInt32() & 1);
}
baseframe.Resize(num_joints);
inversebaseframe.Resize(num_joints);
for (uint32_t i = 0; i < num_joints; i++)
{
const IQMJoint& j = Joints[i];
VSMatrix m, invm;
m.loadIdentity();
m.translate(j.Translate.X, j.Translate.Y, j.Translate.Z);
m.multQuaternion(j.Quaternion);
m.scale(j.Scale.X, j.Scale.Y, j.Scale.Z);
m.inverseMatrix(invm);
if (j.Parent >= 0)
{
baseframe[i] = baseframe[j.Parent];
baseframe[i].multMatrix(m);
inversebaseframe[i] = invm;
inversebaseframe[i].multMatrix(inversebaseframe[j.Parent]);
}
else
{
baseframe[i] = m;
inversebaseframe[i] = invm;
}
}
TRSData.Resize(num_frames * num_poses);
reader.SeekTo(ofs_frames);
for (uint32_t i = 0; i < num_frames; i++)
{
for (uint32_t j = 0; j < num_poses; j++)
{
const IQMPose& p = Poses[j];
FVector3 translate;
translate.X = p.ChannelOffset[0]; if (p.ChannelMask & 0x01) translate.X += reader.ReadUInt16() * p.ChannelScale[0];
translate.Y = p.ChannelOffset[1]; if (p.ChannelMask & 0x02) translate.Y += reader.ReadUInt16() * p.ChannelScale[1];
translate.Z = p.ChannelOffset[2]; if (p.ChannelMask & 0x04) translate.Z += reader.ReadUInt16() * p.ChannelScale[2];
FVector4 quaternion;
quaternion.X = p.ChannelOffset[3]; if (p.ChannelMask & 0x08) quaternion.X += reader.ReadUInt16() * p.ChannelScale[3];
quaternion.Y = p.ChannelOffset[4]; if (p.ChannelMask & 0x10) quaternion.Y += reader.ReadUInt16() * p.ChannelScale[4];
quaternion.Z = p.ChannelOffset[5]; if (p.ChannelMask & 0x20) quaternion.Z += reader.ReadUInt16() * p.ChannelScale[5];
quaternion.W = p.ChannelOffset[6]; if (p.ChannelMask & 0x40) quaternion.W += reader.ReadUInt16() * p.ChannelScale[6];
quaternion.MakeUnit();
FVector3 scale;
scale.X = p.ChannelOffset[7]; if (p.ChannelMask & 0x80) scale.X += reader.ReadUInt16() * p.ChannelScale[7];
scale.Y = p.ChannelOffset[8]; if (p.ChannelMask & 0x100) scale.Y += reader.ReadUInt16() * p.ChannelScale[8];
scale.Z = p.ChannelOffset[9]; if (p.ChannelMask & 0x200) scale.Z += reader.ReadUInt16() * p.ChannelScale[9];
TRSData[i * num_poses + j].translation = translate;
TRSData[i * num_poses + j].rotation = quaternion;
TRSData[i * num_poses + j].scaling = scale;
}
}
//If a model doesn't have an animation loaded, it will crash. We don't want that!
if (num_frames <= 0)
{
num_frames = 1;
TRSData.Resize(num_joints);
for (uint32_t j = 0; j < num_joints; j++)
{
FVector3 translate;
translate.X = Joints[j].Translate.X;
translate.Y = Joints[j].Translate.Y;
translate.Z = Joints[j].Translate.Z;
FVector4 quaternion;
quaternion.X = Joints[j].Quaternion.X;
quaternion.Y = Joints[j].Quaternion.Y;
quaternion.Z = Joints[j].Quaternion.Z;
quaternion.W = Joints[j].Quaternion.W;
quaternion.MakeUnit();
FVector3 scale;
scale.X = Joints[j].Scale.X;
scale.Y = Joints[j].Scale.Y;
scale.Z = Joints[j].Scale.Z;
TRSData[j].translation = translate;
TRSData[j].rotation = quaternion;
TRSData[j].scaling = scale;
}
}
reader.SeekTo(ofs_bounds);
for (IQMBounds& bound : Bounds)
{
bound.BBMins[0] = reader.ReadFloat();
bound.BBMins[1] = reader.ReadFloat();
bound.BBMins[2] = reader.ReadFloat();
bound.BBMaxs[0] = reader.ReadFloat();
bound.BBMaxs[1] = reader.ReadFloat();
bound.BBMaxs[2] = reader.ReadFloat();
bound.XYRadius = reader.ReadFloat();
bound.Radius = reader.ReadFloat();
}
reader.SeekTo(ofs_vertexarrays);
for (IQMVertexArray& vertexArray : VertexArrays)
{
vertexArray.Type = (IQMVertexArrayType)reader.ReadUInt32();
vertexArray.Flags = reader.ReadUInt32();
vertexArray.Format = (IQMVertexArrayFormat)reader.ReadUInt32();
vertexArray.Size = reader.ReadUInt32();
vertexArray.Offset = reader.ReadUInt32();
}
return true;
}
catch (IQMReadErrorException)
{
return false;
}
}
void IQMModel::LoadGeometry()
{
try
{
auto lumpdata = fileSystem.ReadFile(mLumpNum);
IQMFileReader reader(lumpdata.GetMem(), (int)lumpdata.GetSize());
Vertices.Resize(NumVertices);
for (IQMVertexArray& vertexArray : VertexArrays)
{
reader.SeekTo(vertexArray.Offset);
if (vertexArray.Type == IQM_POSITION)
{
LoadPosition(reader, vertexArray);
}
else if (vertexArray.Type == IQM_TEXCOORD)
{
LoadTexcoord(reader, vertexArray);
}
else if (vertexArray.Type == IQM_NORMAL)
{
LoadNormal(reader, vertexArray);
}
else if (vertexArray.Type == IQM_BLENDINDEXES)
{
LoadBlendIndexes(reader, vertexArray);
}
else if (vertexArray.Type == IQM_BLENDWEIGHTS)
{
LoadBlendWeights(reader, vertexArray);
}
}
}
catch (IQMReadErrorException)
{
}
}
void IQMModel::LoadPosition(IQMFileReader& reader, const IQMVertexArray& vertexArray)
{
float lu = 0.0f, lv = 0.0f, lindex = -1.0f;
if (vertexArray.Format == IQM_FLOAT && vertexArray.Size == 3)
{
for (FModelVertex& v : Vertices)
{
v.x = reader.ReadFloat();
v.z = reader.ReadFloat();
v.y = reader.ReadFloat();
v.lu = lu;
v.lv = lv;
v.lindex = lindex;
}
}
else
{
I_FatalError("Unsupported IQM_POSITION vertex format");
}
}
void IQMModel::LoadTexcoord(IQMFileReader& reader, const IQMVertexArray& vertexArray)
{
if (vertexArray.Format == IQM_FLOAT && vertexArray.Size == 2)
{
for (FModelVertex& v : Vertices)
{
v.u = reader.ReadFloat();
v.v = reader.ReadFloat();
}
}
else
{
I_FatalError("Unsupported IQM_TEXCOORD vertex format");
}
}
void IQMModel::LoadNormal(IQMFileReader& reader, const IQMVertexArray& vertexArray)
{
if (vertexArray.Format == IQM_FLOAT && vertexArray.Size == 3)
{
for (FModelVertex& v : Vertices)
{
float x = reader.ReadFloat();
float y = reader.ReadFloat();
float z = reader.ReadFloat();
v.SetNormal(x, z, y);
}
}
else
{
I_FatalError("Unsupported IQM_NORMAL vertex format");
}
}
void IQMModel::LoadBlendIndexes(IQMFileReader& reader, const IQMVertexArray& vertexArray)
{
if (vertexArray.Format == IQM_UBYTE && vertexArray.Size == 4)
{
for (FModelVertex& v : Vertices)
{
int x = reader.ReadUByte();
int y = reader.ReadUByte();
int z = reader.ReadUByte();
int w = reader.ReadUByte();
v.SetBoneSelector(x, y, z, w);
}
}
else if (vertexArray.Format == IQM_INT && vertexArray.Size == 4)
{
for (FModelVertex& v : Vertices)
{
int x = reader.ReadInt32();
int y = reader.ReadInt32();
int z = reader.ReadInt32();
int w = reader.ReadInt32();
v.SetBoneSelector(x, y, z, w);
}
}
else
{
I_FatalError("Unsupported IQM_BLENDINDEXES vertex format");
}
}
void IQMModel::LoadBlendWeights(IQMFileReader& reader, const IQMVertexArray& vertexArray)
{
if (vertexArray.Format == IQM_UBYTE && vertexArray.Size == 4)
{
for (FModelVertex& v : Vertices)
{
int x = reader.ReadUByte();
int y = reader.ReadUByte();
int z = reader.ReadUByte();
int w = reader.ReadUByte();
v.SetBoneWeight(x, y, z, w);
}
}
else if (vertexArray.Format == IQM_FLOAT && vertexArray.Size == 4)
{
for (FModelVertex& v : Vertices)
{
uint8_t x = (int)clamp(reader.ReadFloat() * 255.0f, 0.0f, 255.0f);
uint8_t y = (int)clamp(reader.ReadFloat() * 255.0f, 0.0f, 255.0f);
uint8_t z = (int)clamp(reader.ReadFloat() * 255.0f, 0.0f, 255.0f);
uint8_t w = (int)clamp(reader.ReadFloat() * 255.0f, 0.0f, 255.0f);
v.SetBoneWeight(x, y, z, w);
}
}
else
{
I_FatalError("Unsupported IQM_BLENDWEIGHTS vertex format");
}
}
void IQMModel::UnloadGeometry()
{
Vertices.Reset();
}
int IQMModel::FindFrame(const char* name, bool nodefault)
{
// [MK] allow looking up frames by animation name plus offset (using a colon as separator)
const char* colon = strrchr(name,':');
2022-11-25 11:33:52 +00:00
size_t nlen = (colon==nullptr)?strlen(name):(colon-name);
for (unsigned i = 0; i < Anims.Size(); i++)
{
if (!strnicmp(name, Anims[i].Name.GetChars(), nlen))
{
// if no offset is given, return the first frame
if (colon == nullptr) return Anims[i].FirstFrame;
unsigned offset = atoi(colon+1);
if (offset >= Anims[i].NumFrames) return FErr_NotFound;
return Anims[i].FirstFrame+offset;
}
}
return FErr_NotFound;
}
2023-12-10 12:30:50 +00:00
int IQMModel::FindFirstFrame(FName name)
{
int * nam = NamedAnimations.CheckKey(name);
if(nam) return Anims[*nam].FirstFrame;
return FErr_NotFound;
}
int IQMModel::FindLastFrame(FName name)
{
int * nam = NamedAnimations.CheckKey(name);
if(nam) return Anims[*nam].FirstFrame + Anims[*nam].NumFrames;
return FErr_NotFound;
}
double IQMModel::FindFramerate(FName name)
{
int * nam = NamedAnimations.CheckKey(name);
if(nam) return Anims[*nam].Framerate;
return FErr_NotFound;
}
2023-11-09 21:39:55 +00:00
void IQMModel::RenderFrame(FModelRenderer* renderer, FGameTexture* skin, int frame1, int frame2, double inter, FTranslationID translation, const FTextureID* surfaceskinids, const TArray<VSMatrix>& boneData, int boneStartPosition)
{
renderer->SetupFrame(this, 0, 0, NumVertices, boneData, boneStartPosition);
FGameTexture* lastSkin = nullptr;
for (unsigned i = 0; i < Meshes.Size(); i++)
{
FGameTexture* meshSkin = skin;
if (!meshSkin)
{
if (surfaceskinids && surfaceskinids[i].isValid())
{
meshSkin = TexMan.GetGameTexture(surfaceskinids[i], true);
}
else if (Meshes[i].Skin.isValid())
{
meshSkin = TexMan.GetGameTexture(Meshes[i].Skin, true);
}
else
{
continue;
}
}
if (meshSkin->isValid())
{
if (meshSkin != lastSkin)
{
renderer->SetMaterial(meshSkin, false, translation);
lastSkin = meshSkin;
}
renderer->DrawElements(Meshes[i].NumTriangles * 3, Meshes[i].FirstTriangle * 3 * sizeof(unsigned int));
}
}
}
void IQMModel::BuildVertexBuffer(FModelRenderer* renderer)
{
if (!GetVertexBuffer(renderer->GetType()))
{
LoadGeometry();
auto vbuf = renderer->CreateVertexBuffer(true, true);
SetVertexBuffer(renderer->GetType(), vbuf);
FModelVertex* vertptr = vbuf->LockVertexBuffer(Vertices.Size());
memcpy(vertptr, Vertices.Data(), Vertices.Size() * sizeof(FModelVertex));
vbuf->UnlockVertexBuffer();
unsigned int* indxptr = vbuf->LockIndexBuffer(Triangles.Size() * 3);
memcpy(indxptr, Triangles.Data(), Triangles.Size() * sizeof(unsigned int) * 3);
vbuf->UnlockIndexBuffer();
UnloadGeometry();
}
}
void IQMModel::AddSkins(uint8_t* hitlist, const FTextureID* surfaceskinids)
{
for (unsigned i = 0; i < Meshes.Size(); i++)
{
if (surfaceskinids && surfaceskinids[i].isValid())
hitlist[surfaceskinids[i].GetIndex()] |= FTextureManager::HIT_Flat;
}
}
const TArray<TRS>* IQMModel::AttachAnimationData()
{
return &TRSData;
}
2023-12-10 12:30:50 +00:00
static TRS InterpolateBone(const TRS &from, const TRS &to, float t, float invt)
{
TRS bone;
bone.translation = from.translation * invt + to.translation * t;
bone.rotation = from.rotation * invt;
if ((bone.rotation | to.rotation * t) < 0)
{
bone.rotation.X *= -1; bone.rotation.Y *= -1; bone.rotation.Z *= -1; bone.rotation.W *= -1;
}
bone.rotation += to.rotation * t;
bone.rotation.MakeUnit();
bone.scaling = from.scaling * invt + to.scaling * t;
return bone;
}
const TArray<VSMatrix> IQMModel::CalculateBones(int frame1, int frame2, float inter, int frame1_prev, float inter1_prev, int frame2_prev, float inter2_prev, const TArray<TRS>* animationData, DBoneComponents* boneComponentData, int index)
{
const TArray<TRS>& animationFrames = animationData ? *animationData : TRSData;
if (Joints.Size() > 0)
{
2023-03-26 09:45:25 +00:00
int numbones = Joints.SSize();
2023-03-26 09:45:25 +00:00
if (boneComponentData->trscomponents[index].SSize() != numbones)
boneComponentData->trscomponents[index].Resize(numbones);
2023-03-26 09:45:25 +00:00
if (boneComponentData->trsmatrix[index].SSize() != numbones)
boneComponentData->trsmatrix[index].Resize(numbones);
2023-03-26 09:45:25 +00:00
frame1 = clamp(frame1, 0, (animationFrames.SSize() - 1) / numbones);
frame2 = clamp(frame2, 0, (animationFrames.SSize() - 1) / numbones);
int offset1 = frame1 * numbones;
int offset2 = frame2 * numbones;
2023-12-10 12:30:50 +00:00
int offset1_1 = frame1_prev * numbones;
int offset2_1 = frame2_prev * numbones;
float invt = 1.0f - inter;
float invt1 = 1.0f - inter1_prev;
float invt2 = 1.0f - inter2_prev;
float swapYZ[16] = { 0.0f };
swapYZ[0 + 0 * 4] = 1.0f;
swapYZ[1 + 2 * 4] = 1.0f;
swapYZ[2 + 1 * 4] = 1.0f;
swapYZ[3 + 3 * 4] = 1.0f;
TArray<VSMatrix> bones(numbones, true);
TArray<bool> modifiedBone(numbones, true);
for (int i = 0; i < numbones; i++)
{
2023-12-10 12:30:50 +00:00
TRS prev;
if(frame1 >= 0 && (frame1_prev >= 0 || inter1_prev < 0))
{
prev = inter1_prev < 0 ? animationFrames[offset1 + i] : InterpolateBone(animationFrames[offset1_1 + i], animationFrames[offset1 + i], inter1_prev, invt1);
}
TRS next;
if(frame2 >= 0 && (frame2_prev >= 0 || inter2_prev < 0))
{
next = inter2_prev < 0 ? animationFrames[offset2 + i] : InterpolateBone(animationFrames[offset2_1 + i], animationFrames[offset2 + i], inter2_prev, invt2);
}
TRS bone;
2023-12-10 12:30:50 +00:00
if(frame1 >= 0 || inter < 0)
{
2023-12-10 12:30:50 +00:00
bone = inter < 0 ? animationFrames[offset1 + i] : InterpolateBone(prev, next , inter, invt);
}
if (Joints[i].Parent >= 0 && modifiedBone[Joints[i].Parent])
{
boneComponentData->trscomponents[index][i] = bone;
modifiedBone[i] = true;
}
else if (boneComponentData->trscomponents[index][i].Equals(bone))
{
bones[i] = boneComponentData->trsmatrix[index][i];
modifiedBone[i] = false;
continue;
}
else
{
boneComponentData->trscomponents[index][i] = bone;
modifiedBone[i] = true;
}
VSMatrix m;
m.loadIdentity();
m.translate(bone.translation.X, bone.translation.Y, bone.translation.Z);
m.multQuaternion(bone.rotation);
m.scale(bone.scaling.X, bone.scaling.Y, bone.scaling.Z);
VSMatrix& result = bones[i];
if (Joints[i].Parent >= 0)
{
result = bones[Joints[i].Parent];
result.multMatrix(swapYZ);
result.multMatrix(baseframe[Joints[i].Parent]);
result.multMatrix(m);
result.multMatrix(inversebaseframe[i]);
}
else
{
result.loadMatrix(swapYZ);
result.multMatrix(m);
result.multMatrix(inversebaseframe[i]);
}
result.multMatrix(swapYZ);
}
boneComponentData->trsmatrix[index] = bones;
return bones;
}
return {};
}