qzdoom/src/gl/scene/gl_spritelight.cpp

263 lines
8.1 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2002-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** gl_light.cpp
** Light level / fog management / dynamic lights
**
*/
#include "gl/system/gl_system.h"
#include "c_dispatch.h"
#include "p_local.h"
#include "p_effect.h"
#include "vectors.h"
#include "g_level.h"
#include "g_levellocals.h"
#include "actorinlines.h"
#include "hwrenderer/dynlights/hw_dynlightdata.h"
#include "gl/system/gl_cvars.h"
#include "gl/renderer/gl_renderer.h"
#include "gl/renderer/gl_lightdata.h"
#include "gl/scene/gl_drawinfo.h"
#include "gl/scene/gl_portal.h"
#include "gl/shaders/gl_shader.h"
#include "gl/textures/gl_material.h"
#include "gl/dynlights/gl_lightbuffer.h"
template<class T>
T smoothstep(const T edge0, const T edge1, const T x)
{
auto t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);
}
//==========================================================================
//
// Sets a single light value from all dynamic lights affecting the specified location
//
//==========================================================================
void gl_SetDynSpriteLight(AActor *self, float x, float y, float z, subsector_t * subsec)
{
ADynamicLight *light;
float frac, lr, lg, lb;
float radius;
float out[3] = { 0.0f, 0.0f, 0.0f };
// Go through both light lists
FLightNode * node = subsec->lighthead;
while (node)
{
light=node->lightsource;
if (light->visibletoplayer && !(light->flags2&MF2_DORMANT) && (!(light->lightflags&LF_DONTLIGHTSELF) || light->target != self || !self) && !(light->lightflags&LF_DONTLIGHTACTORS))
{
float dist;
FVector3 L;
// This is a performance critical section of code where we cannot afford to let the compiler decide whether to inline the function or not.
// This will do the calculations explicitly rather than calling one of AActor's utility functions.
if (level.Displacements.size > 0)
{
int fromgroup = light->Sector->PortalGroup;
int togroup = subsec->sector->PortalGroup;
if (fromgroup == togroup || fromgroup == 0 || togroup == 0) goto direct;
DVector2 offset = level.Displacements.getOffset(fromgroup, togroup);
L = FVector3(x - light->X() - offset.X, y - light->Y() - offset.Y, z - light->Z());
}
else
{
direct:
L = FVector3(x - light->X(), y - light->Y(), z - light->Z());
}
dist = L.LengthSquared();
radius = light->GetRadius();
if (dist < radius * radius)
{
dist = sqrtf(dist); // only calculate the square root if we really need it.
frac = 1.0f - (dist / radius);
if (light->IsSpot())
{
L *= -1.0f / dist;
DAngle negPitch = -light->Angles.Pitch;
double xyLen = negPitch.Cos();
double spotDirX = -light->Angles.Yaw.Cos() * xyLen;
double spotDirY = -light->Angles.Yaw.Sin() * xyLen;
double spotDirZ = -negPitch.Sin();
double cosDir = L.X * spotDirX + L.Y * spotDirY + L.Z * spotDirZ;
frac *= (float)smoothstep(light->SpotOuterAngle.Cos(), light->SpotInnerAngle.Cos(), cosDir);
}
if (frac > 0 && GLRenderer->mShadowMap.ShadowTest(light, { x, y, z }))
{
lr = light->GetRed() / 255.0f;
lg = light->GetGreen() / 255.0f;
lb = light->GetBlue() / 255.0f;
if (light->IsSubtractive())
{
float bright = FVector3(lr, lg, lb).Length();
FVector3 lightColor(lr, lg, lb);
lr = (bright - lr) * -1;
lg = (bright - lg) * -1;
lb = (bright - lb) * -1;
}
out[0] += lr * frac;
out[1] += lg * frac;
out[2] += lb * frac;
}
}
}
node = node->nextLight;
}
gl_RenderState.SetDynLight(out[0], out[1], out[2]);
}
void gl_SetDynSpriteLight(AActor *thing, particle_t *particle)
{
if (thing != NULL)
{
gl_SetDynSpriteLight(thing, thing->X(), thing->Y(), thing->Center(), thing->subsector);
}
else if (particle != NULL)
{
gl_SetDynSpriteLight(NULL, particle->Pos.X, particle->Pos.Y, particle->Pos.Z, particle->subsector);
}
}
// Check if circle potentially intersects with node AABB
static bool CheckBBoxCircle(float *bbox, float x, float y, float radiusSquared)
{
float centerX = (bbox[BOXRIGHT] + bbox[BOXLEFT]) * 0.5f;
float centerY = (bbox[BOXBOTTOM] + bbox[BOXTOP]) * 0.5f;
float extentX = (bbox[BOXRIGHT] - bbox[BOXLEFT]) * 0.5f;
float extentY = (bbox[BOXBOTTOM] - bbox[BOXTOP]) * 0.5f;
float aabbRadiusSquared = extentX * extentX + extentY * extentY;
x -= centerX;
y -= centerY;
float dist = x * x + y * y;
return dist <= radiusSquared + aabbRadiusSquared;
}
template<typename Callback>
void BSPNodeWalkCircle(void *node, float x, float y, float radiusSquared, const Callback &callback)
{
while (!((size_t)node & 1))
{
node_t *bsp = (node_t *)node;
if (CheckBBoxCircle(bsp->bbox[0], x, y, radiusSquared))
BSPNodeWalkCircle(bsp->children[0], x, y, radiusSquared, callback);
if (!CheckBBoxCircle(bsp->bbox[1], x, y, radiusSquared))
return;
node = bsp->children[1];
}
subsector_t *sub = (subsector_t *)((uint8_t *)node - 1);
callback(sub);
}
template<typename Callback>
void BSPWalkCircle(float x, float y, float radiusSquared, const Callback &callback)
{
if (level.nodes.Size() == 0)
callback(&level.subsectors[0]);
else
BSPNodeWalkCircle(level.HeadNode(), x, y, radiusSquared, callback);
}
int gl_SetDynModelLight(AActor *self, int dynlightindex)
{
static FDynLightData modellightdata; // If this ever gets multithreaded, this variable must either be made non-static or thread_local.
// For deferred light mode this function gets called twice. First time for list upload, and second for draw.
if (gl.lightmethod == LM_DEFERRED && dynlightindex != -1)
{
gl_RenderState.SetDynLight(0, 0, 0);
return dynlightindex;
}
// Legacy render path gets the old flat model light
if (gl.lightmethod == LM_LEGACY)
{
gl_SetDynSpriteLight(self, nullptr);
return -1;
}
modellightdata.Clear();
if (self)
{
static std::vector<ADynamicLight*> addedLights; // static so that we build up a reserve (memory allocations stop)
addedLights.clear();
float x = self->X();
float y = self->Y();
float z = self->Center();
float radiusSquared = self->renderradius * self->renderradius;
BSPWalkCircle(x, y, radiusSquared, [&](subsector_t *subsector) // Iterate through all subsectors potentially touched by actor
{
FLightNode * node = subsector->lighthead;
while (node) // check all lights touching a subsector
{
ADynamicLight *light = node->lightsource;
if (light->visibletoplayer && !(light->flags2&MF2_DORMANT) && (!(light->lightflags&LF_DONTLIGHTSELF) || light->target != self) && !(light->lightflags&LF_DONTLIGHTACTORS))
{
int group = subsector->sector->PortalGroup;
DVector3 pos = light->PosRelative(group);
float radius = light->GetRadius() + self->renderradius;
double dx = pos.X - x;
double dy = pos.Y - y;
double dz = pos.Z - z;
double distSquared = dx * dx + dy * dy + dz * dz;
if (distSquared < radius * radius) // Light and actor touches
{
if (std::find(addedLights.begin(), addedLights.end(), light) == addedLights.end()) // Check if we already added this light from a different subsector
{
modellightdata.AddLightToList(group, light);
addedLights.push_back(light);
}
}
}
node = node->nextLight;
}
});
}
dynlightindex = GLRenderer->mLights->UploadLights(modellightdata);
if (gl.lightmethod != LM_DEFERRED)
{
gl_RenderState.SetDynLight(0, 0, 0);
}
return dynlightindex;
}