// //--------------------------------------------------------------------------- // // Copyright(C) 2002-2016 Christoph Oelckers // All rights reserved. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //-------------------------------------------------------------------------- // /* ** gl_light.cpp ** Light level / fog management / dynamic lights ** */ #include "gl/system/gl_system.h" #include "c_dispatch.h" #include "p_local.h" #include "p_effect.h" #include "vectors.h" #include "g_level.h" #include "g_levellocals.h" #include "actorinlines.h" #include "hwrenderer/dynlights/hw_dynlightdata.h" #include "gl/system/gl_cvars.h" #include "gl/renderer/gl_renderer.h" #include "gl/renderer/gl_lightdata.h" #include "gl/scene/gl_drawinfo.h" #include "gl/scene/gl_portal.h" #include "gl/shaders/gl_shader.h" #include "gl/textures/gl_material.h" #include "gl/dynlights/gl_lightbuffer.h" template T smoothstep(const T edge0, const T edge1, const T x) { auto t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); return t * t * (3.0 - 2.0 * t); } //========================================================================== // // Sets a single light value from all dynamic lights affecting the specified location // //========================================================================== void gl_SetDynSpriteLight(AActor *self, float x, float y, float z, subsector_t * subsec) { ADynamicLight *light; float frac, lr, lg, lb; float radius; float out[3] = { 0.0f, 0.0f, 0.0f }; // Go through both light lists FLightNode * node = subsec->lighthead; while (node) { light=node->lightsource; if (light->visibletoplayer && !(light->flags2&MF2_DORMANT) && (!(light->lightflags&LF_DONTLIGHTSELF) || light->target != self || !self) && !(light->lightflags&LF_DONTLIGHTACTORS)) { float dist; FVector3 L; // This is a performance critical section of code where we cannot afford to let the compiler decide whether to inline the function or not. // This will do the calculations explicitly rather than calling one of AActor's utility functions. if (level.Displacements.size > 0) { int fromgroup = light->Sector->PortalGroup; int togroup = subsec->sector->PortalGroup; if (fromgroup == togroup || fromgroup == 0 || togroup == 0) goto direct; DVector2 offset = level.Displacements.getOffset(fromgroup, togroup); L = FVector3(x - light->X() - offset.X, y - light->Y() - offset.Y, z - light->Z()); } else { direct: L = FVector3(x - light->X(), y - light->Y(), z - light->Z()); } dist = L.LengthSquared(); radius = light->GetRadius(); if (dist < radius * radius) { dist = sqrtf(dist); // only calculate the square root if we really need it. frac = 1.0f - (dist / radius); if (light->IsSpot()) { L *= -1.0f / dist; DAngle negPitch = -light->Angles.Pitch; double xyLen = negPitch.Cos(); double spotDirX = -light->Angles.Yaw.Cos() * xyLen; double spotDirY = -light->Angles.Yaw.Sin() * xyLen; double spotDirZ = -negPitch.Sin(); double cosDir = L.X * spotDirX + L.Y * spotDirY + L.Z * spotDirZ; frac *= (float)smoothstep(light->SpotOuterAngle.Cos(), light->SpotInnerAngle.Cos(), cosDir); } if (frac > 0 && GLRenderer->mShadowMap.ShadowTest(light, { x, y, z })) { lr = light->GetRed() / 255.0f; lg = light->GetGreen() / 255.0f; lb = light->GetBlue() / 255.0f; if (light->IsSubtractive()) { float bright = FVector3(lr, lg, lb).Length(); FVector3 lightColor(lr, lg, lb); lr = (bright - lr) * -1; lg = (bright - lg) * -1; lb = (bright - lb) * -1; } out[0] += lr * frac; out[1] += lg * frac; out[2] += lb * frac; } } } node = node->nextLight; } gl_RenderState.SetDynLight(out[0], out[1], out[2]); } void gl_SetDynSpriteLight(AActor *thing, particle_t *particle) { if (thing != NULL) { gl_SetDynSpriteLight(thing, thing->X(), thing->Y(), thing->Center(), thing->subsector); } else if (particle != NULL) { gl_SetDynSpriteLight(NULL, particle->Pos.X, particle->Pos.Y, particle->Pos.Z, particle->subsector); } } // Check if circle potentially intersects with node AABB static bool CheckBBoxCircle(float *bbox, float x, float y, float radiusSquared) { float centerX = (bbox[BOXRIGHT] + bbox[BOXLEFT]) * 0.5f; float centerY = (bbox[BOXBOTTOM] + bbox[BOXTOP]) * 0.5f; float extentX = (bbox[BOXRIGHT] - bbox[BOXLEFT]) * 0.5f; float extentY = (bbox[BOXBOTTOM] - bbox[BOXTOP]) * 0.5f; float aabbRadiusSquared = extentX * extentX + extentY * extentY; x -= centerX; y -= centerY; float dist = x * x + y * y; return dist <= radiusSquared + aabbRadiusSquared; } template void BSPNodeWalkCircle(void *node, float x, float y, float radiusSquared, const Callback &callback) { while (!((size_t)node & 1)) { node_t *bsp = (node_t *)node; if (CheckBBoxCircle(bsp->bbox[0], x, y, radiusSquared)) BSPNodeWalkCircle(bsp->children[0], x, y, radiusSquared, callback); if (!CheckBBoxCircle(bsp->bbox[1], x, y, radiusSquared)) return; node = bsp->children[1]; } subsector_t *sub = (subsector_t *)((uint8_t *)node - 1); callback(sub); } template void BSPWalkCircle(float x, float y, float radiusSquared, const Callback &callback) { if (level.nodes.Size() == 0) callback(&level.subsectors[0]); else BSPNodeWalkCircle(level.HeadNode(), x, y, radiusSquared, callback); } int gl_SetDynModelLight(AActor *self, int dynlightindex) { static FDynLightData modellightdata; // If this ever gets multithreaded, this variable must either be made non-static or thread_local. // For deferred light mode this function gets called twice. First time for list upload, and second for draw. if (gl.lightmethod == LM_DEFERRED && dynlightindex != -1) { gl_RenderState.SetDynLight(0, 0, 0); return dynlightindex; } // Legacy render path gets the old flat model light if (gl.lightmethod == LM_LEGACY) { gl_SetDynSpriteLight(self, nullptr); return -1; } modellightdata.Clear(); if (self) { static std::vector addedLights; // static so that we build up a reserve (memory allocations stop) addedLights.clear(); float x = self->X(); float y = self->Y(); float z = self->Center(); float radiusSquared = self->renderradius * self->renderradius; BSPWalkCircle(x, y, radiusSquared, [&](subsector_t *subsector) // Iterate through all subsectors potentially touched by actor { FLightNode * node = subsector->lighthead; while (node) // check all lights touching a subsector { ADynamicLight *light = node->lightsource; if (light->visibletoplayer && !(light->flags2&MF2_DORMANT) && (!(light->lightflags&LF_DONTLIGHTSELF) || light->target != self) && !(light->lightflags&LF_DONTLIGHTACTORS)) { int group = subsector->sector->PortalGroup; DVector3 pos = light->PosRelative(group); float radius = light->GetRadius() + self->renderradius; double dx = pos.X - x; double dy = pos.Y - y; double dz = pos.Z - z; double distSquared = dx * dx + dy * dy + dz * dz; if (distSquared < radius * radius) // Light and actor touches { if (std::find(addedLights.begin(), addedLights.end(), light) == addedLights.end()) // Check if we already added this light from a different subsector { modellightdata.AddLightToList(group, light); addedLights.push_back(light); } } } node = node->nextLight; } }); } dynlightindex = GLRenderer->mLights->UploadLights(modellightdata); if (gl.lightmethod != LM_DEFERRED) { gl_RenderState.SetDynLight(0, 0, 0); } return dynlightindex; }