qzdoom/src/swrenderer/things/r_voxel.cpp

1014 lines
31 KiB
C++
Raw Normal View History

2016-12-25 10:07:50 +00:00
/*
** Voxel rendering
2017-01-09 13:20:47 +00:00
** Copyright (c) 1998-2016 Randy Heit
2016-12-25 10:07:50 +00:00
** Copyright (c) 2016 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include <stdlib.h>
#include "templates.h"
#include "doomdef.h"
#include "sbar.h"
#include "r_data/r_translate.h"
#include "r_data/colormaps.h"
#include "r_data/voxels.h"
#include "r_data/sprites.h"
#include "d_net.h"
#include "po_man.h"
#include "r_utility.h"
2016-12-27 05:31:55 +00:00
#include "swrenderer/drawers/r_draw.h"
#include "swrenderer/drawers/r_thread.h"
#include "swrenderer/things/r_visiblesprite.h"
#include "swrenderer/things/r_voxel.h"
#include "swrenderer/scene/r_portal.h"
#include "swrenderer/scene/r_translucent.h"
2016-12-27 05:31:55 +00:00
#include "swrenderer/r_main.h"
2016-12-25 10:07:50 +00:00
EXTERN_CVAR(Bool, r_fullbrightignoresectorcolor)
2016-12-25 10:07:50 +00:00
namespace swrenderer
{
2017-01-11 17:25:14 +00:00
void RenderVoxel::Project(AActor *thing, DVector3 pos, FVoxelDef *voxel, const DVector2 &spriteScale, int renderflags, WaterFakeSide fakeside, F3DFloor *fakefloor, F3DFloor *fakeceiling, sector_t *current_sector, int spriteshade)
{
// transform the origin point
double tr_x = pos.X - ViewPos.X;
double tr_y = pos.Y - ViewPos.Y;
double tz = tr_x * ViewTanCos + tr_y * ViewTanSin;
double tx = tr_x * ViewSin - tr_y * ViewCos;
// [RH] Flip for mirrors
RenderPortal *renderportal = RenderPortal::Instance();
if (renderportal->MirrorFlags & RF_XFLIP)
{
tx = -tx;
}
//tx2 = tx >> 4;
// too far off the side?
if (fabs(tx / 128) > fabs(tz))
{
return;
}
double xscale = spriteScale.X * voxel->Scale;
double yscale = spriteScale.Y * voxel->Scale;
double piv = voxel->Voxel->Mips[0].Pivot.Z;
double gzt = pos.Z + yscale * piv - thing->Floorclip;
double gzb = pos.Z + yscale * (piv - voxel->Voxel->Mips[0].SizeZ);
if (gzt <= gzb)
return;
// killough 3/27/98: exclude things totally separated
// from the viewer, by either water or fake ceilings
// killough 4/11/98: improve sprite clipping for underwater/fake ceilings
sector_t *heightsec = thing->Sector->GetHeightSec();
if (heightsec != nullptr) // only clip things which are in special sectors
{
if (fakeside == WaterFakeSide::AboveCeiling)
{
if (gzt < heightsec->ceilingplane.ZatPoint(pos))
return;
}
else if (fakeside == WaterFakeSide::BelowFloor)
{
if (gzb >= heightsec->floorplane.ZatPoint(pos))
return;
}
else
{
if (gzt < heightsec->floorplane.ZatPoint(pos))
return;
if (!(heightsec->MoreFlags & SECF_FAKEFLOORONLY) && gzb >= heightsec->ceilingplane.ZatPoint(pos))
return;
}
}
2017-01-11 18:33:02 +00:00
vissprite_t *vis = VisibleSpriteList::Add();
vis->CurrentPortalUniq = renderportal->CurrentPortalUniq;
vis->xscale = FLOAT2FIXED(xscale);
vis->yscale = (float)yscale;
vis->x1 = renderportal->WindowLeft;
vis->x2 = renderportal->WindowRight;
vis->idepth = 1 / MINZ;
vis->floorclip = thing->Floorclip;
pos.Z -= thing->Floorclip;
vis->Angle = thing->Angles.Yaw + voxel->AngleOffset;
int voxelspin = (thing->flags & MF_DROPPED) ? voxel->DroppedSpin : voxel->PlacedSpin;
if (voxelspin != 0)
{
DAngle ang = double(I_FPSTime()) * voxelspin / 1000;
vis->Angle -= ang;
}
vis->pa.vpos = { (float)ViewPos.X, (float)ViewPos.Y, (float)ViewPos.Z };
vis->pa.vang = FAngle((float)ViewAngle.Degrees);
// killough 3/27/98: save sector for special clipping later
vis->heightsec = heightsec;
vis->sector = thing->Sector;
vis->depth = (float)tz;
vis->gpos = { (float)pos.X, (float)pos.Y, (float)pos.Z };
vis->gzb = (float)gzb; // [RH] use gzb, not thing->z
vis->gzt = (float)gzt; // killough 3/27/98
vis->deltax = float(pos.X - ViewPos.X);
vis->deltay = float(pos.Y - ViewPos.Y);
vis->renderflags = renderflags;
if (thing->flags5 & MF5_BRIGHT)
vis->renderflags |= RF_FULLBRIGHT; // kg3D
vis->Style.RenderStyle = thing->RenderStyle;
vis->FillColor = thing->fillcolor;
vis->Translation = thing->Translation; // [RH] thing translation table
vis->FakeFlatStat = fakeside;
vis->Style.Alpha = float(thing->Alpha);
vis->fakefloor = fakefloor;
vis->fakeceiling = fakeceiling;
vis->Style.ColormapNum = 0;
vis->bInMirror = renderportal->MirrorFlags & RF_XFLIP;
vis->bSplitSprite = false;
vis->voxel = voxel->Voxel;
vis->bIsVoxel = true;
vis->bWallSprite = false;
2017-01-11 18:33:02 +00:00
RenderTranslucent::DrewAVoxel = true;
// The software renderer cannot invert the source without inverting the overlay
// too. That means if the source is inverted, we need to do the reverse of what
// the invert overlay flag says to do.
INTBOOL invertcolormap = (vis->Style.RenderStyle.Flags & STYLEF_InvertOverlay);
if (vis->Style.RenderStyle.Flags & STYLEF_InvertSource)
{
invertcolormap = !invertcolormap;
}
FDynamicColormap *mybasecolormap = basecolormap;
if (current_sector->sectornum != thing->Sector->sectornum) // compare sectornums to account for R_FakeFlat copies.
{
// Todo: The actor is from a different sector so we have to retrieve the proper basecolormap for that sector.
}
// Sprites that are added to the scene must fade to black.
if (vis->Style.RenderStyle == LegacyRenderStyles[STYLE_Add] && mybasecolormap->Fade != 0)
{
mybasecolormap = GetSpecialLights(mybasecolormap->Color, 0, mybasecolormap->Desaturate);
}
if (vis->Style.RenderStyle.Flags & STYLEF_FadeToBlack)
{
if (invertcolormap)
{ // Fade to white
mybasecolormap = GetSpecialLights(mybasecolormap->Color, MAKERGB(255, 255, 255), mybasecolormap->Desaturate);
invertcolormap = false;
}
else
{ // Fade to black
mybasecolormap = GetSpecialLights(mybasecolormap->Color, MAKERGB(0, 0, 0), mybasecolormap->Desaturate);
}
}
// get light level
if (fixedcolormap != nullptr)
{ // fixed map
vis->Style.BaseColormap = fixedcolormap;
vis->Style.ColormapNum = 0;
}
else
{
if (invertcolormap)
{
mybasecolormap = GetSpecialLights(mybasecolormap->Color, mybasecolormap->Fade.InverseColor(), mybasecolormap->Desaturate);
}
if (fixedlightlev >= 0)
{
vis->Style.BaseColormap = mybasecolormap;
vis->Style.ColormapNum = fixedlightlev >> COLORMAPSHIFT;
}
else if (!foggy && ((renderflags & RF_FULLBRIGHT) || (thing->flags5 & MF5_BRIGHT)))
{ // full bright
vis->Style.BaseColormap = (r_fullbrightignoresectorcolor) ? &FullNormalLight : mybasecolormap;
vis->Style.ColormapNum = 0;
}
else
{ // diminished light
vis->Style.ColormapNum = GETPALOOKUP(r_SpriteVisibility / MAX(tz, MINZ), spriteshade);
vis->Style.BaseColormap = mybasecolormap;
}
}
}
2017-01-11 17:25:14 +00:00
void RenderVoxel::Render(vissprite_t *sprite, int minZ, int maxZ, short *cliptop, short *clipbottom)
2016-12-25 10:07:50 +00:00
{
R_SetColorMapLight(sprite->Style.BaseColormap, 0, sprite->Style.ColormapNum << FRACBITS);
bool visible = R_SetPatchStyle(sprite->Style.RenderStyle, sprite->Style.Alpha, sprite->Translation, sprite->FillColor);
if (!visible)
return;
2016-12-27 02:07:50 +00:00
DVector3 view_origin = { sprite->pa.vpos.X, sprite->pa.vpos.Y, sprite->pa.vpos.Z };
2016-12-25 10:07:50 +00:00
FAngle view_angle = sprite->pa.vang;
DVector3 sprite_origin = { sprite->gpos.X, sprite->gpos.Y, sprite->gpos.Z };
DAngle sprite_angle = sprite->Angle;
double sprite_xscale = FIXED2DBL(sprite->xscale);
double sprite_yscale = sprite->yscale;
FVoxel *voxel = sprite->voxel;
2016-12-27 02:07:50 +00:00
// Select mipmap level:
double viewSin = view_angle.Cos();
double viewCos = view_angle.Sin();
double logmip = fabs((view_origin.X - sprite_origin.X) * viewCos - (view_origin.Y - sprite_origin.Y) * viewSin);
int miplevel = 0;
while (miplevel < voxel->NumMips - 1 && logmip >= FocalLengthX)
{
logmip *= 0.5;
miplevel++;
}
2016-12-25 10:07:50 +00:00
const FVoxelMipLevel &mip = voxel->Mips[miplevel];
if (mip.SlabData == nullptr)
return;
2016-12-27 02:07:50 +00:00
minZ >>= miplevel;
maxZ >>= miplevel;
sprite_xscale *= (1 << miplevel);
sprite_yscale *= (1 << miplevel);
// Find voxel cube eigenvectors and origin in world space:
2016-12-25 10:07:50 +00:00
double spriteSin = sprite_angle.Sin();
double spriteCos = sprite_angle.Cos();
DVector2 dirX(spriteSin * sprite_xscale, -spriteCos * sprite_xscale);
DVector2 dirY(spriteCos * sprite_xscale, spriteSin * sprite_xscale);
2016-12-27 04:12:10 +00:00
double dirZ = -sprite_yscale;
DVector3 voxel_origin = sprite_origin;
voxel_origin.X -= dirX.X * mip.Pivot.X + dirX.Y * mip.Pivot.Y;
voxel_origin.Y -= dirY.X * mip.Pivot.X + dirY.Y * mip.Pivot.Y;
voxel_origin.Z -= dirZ * mip.Pivot.Z;
2016-12-27 02:07:50 +00:00
// Voxel cube walking directions:
int startX[4] = { 0, mip.SizeX - 1, 0, mip.SizeX - 1 };
int startY[4] = { 0, 0, mip.SizeY - 1, mip.SizeY - 1 };
int stepX[4] = { 1, -1, 1, -1 };
int stepY[4] = { 1, 1, -1, -1 };
2016-12-27 02:07:50 +00:00
// The point in cube mipmap local space where voxel sides change from front to backfacing:
double dx = (view_origin.X - sprite_origin.X) / sprite_xscale;
double dy = (view_origin.Y - sprite_origin.Y) / sprite_xscale;
int backX = (int)(dx * spriteCos - dy * spriteSin + mip.Pivot.X);
int backY = (int)(dy * spriteCos + dx * spriteSin + mip.Pivot.Y);
int endX = clamp(backX, 0, mip.SizeX - 1);
int endY = clamp(backY, 0, mip.SizeY - 1);
// Draw the voxel cube:
for (int index = 0; index < 4; index++)
{
2016-12-27 02:07:50 +00:00
if ((stepX[index] < 0 && endX >= startX[index]) ||
(stepX[index] > 0 && endX <= startX[index]) ||
(stepY[index] < 0 && endY >= startY[index]) ||
(stepY[index] > 0 && endY <= startY[index])) continue;
for (int x = startX[index]; x != endX; x += stepX[index])
{
2016-12-27 02:07:50 +00:00
for (int y = startY[index]; y != endY; y += stepY[index])
{
2017-01-11 17:25:14 +00:00
kvxslab_t *slab_start = GetSlabStart(mip, x, y);
kvxslab_t *slab_end = GetSlabEnd(mip, x, y);
2017-01-11 17:25:14 +00:00
for (kvxslab_t *slab = slab_start; slab != slab_end; slab = NextSlab(slab))
{
2016-12-27 02:07:50 +00:00
// To do: check slab->backfacecull
int ztop = slab->ztop;
int zbottom = ztop + slab->zleng;
//ztop = MAX(ztop, minZ);
//zbottom = MIN(zbottom, maxZ);
for (int z = ztop; z < zbottom; z++)
{
uint8_t color = slab->col[z - slab->ztop];
2016-12-27 02:07:50 +00:00
DVector3 voxel_pos = voxel_origin;
voxel_pos.X += dirX.X * x + dirX.Y * y;
voxel_pos.Y += dirY.X * x + dirY.Y * y;
voxel_pos.Z += dirZ * z;
2017-01-11 17:25:14 +00:00
FillBox(voxel_pos, sprite_xscale, sprite_yscale, color, cliptop, clipbottom, false, false);
2016-12-27 02:07:50 +00:00
}
}
}
}
}
}
2017-01-11 17:25:14 +00:00
kvxslab_t *RenderVoxel::GetSlabStart(const FVoxelMipLevel &mip, int x, int y)
{
return (kvxslab_t *)&mip.SlabData[mip.OffsetX[x] + (int)mip.OffsetXY[x * (mip.SizeY + 1) + y]];
}
2016-12-25 10:07:50 +00:00
2017-01-11 17:25:14 +00:00
kvxslab_t *RenderVoxel::GetSlabEnd(const FVoxelMipLevel &mip, int x, int y)
{
2017-01-11 17:25:14 +00:00
return GetSlabStart(mip, x, y + 1);
}
2017-01-11 17:25:14 +00:00
kvxslab_t *RenderVoxel::NextSlab(kvxslab_t *slab)
{
return (kvxslab_t*)(((uint8_t*)slab) + 3 + slab->zleng);
2016-12-25 10:07:50 +00:00
}
2017-01-11 17:25:14 +00:00
void RenderVoxel::FillBox(DVector3 origin, double extentX, double extentY, int color, short *cliptop, short *clipbottom, bool viewspace, bool pixelstretch)
2016-12-25 10:07:50 +00:00
{
double viewX, viewY, viewZ;
if (viewspace)
{
viewX = origin.X;
viewY = origin.Y;
viewZ = origin.Z;
}
else // world space
{
double translatedX = origin.X - ViewPos.X;
double translatedY = origin.Y - ViewPos.Y;
double translatedZ = origin.Z - ViewPos.Z;
viewX = translatedX * ViewSin - translatedY * ViewCos;
viewY = translatedZ;
viewZ = translatedX * ViewTanCos + translatedY * ViewTanSin;
}
if (viewZ < 0.01f)
return;
double screenX = CenterX + viewX / viewZ * CenterX;
double screenY = CenterY - viewY / viewZ * InvZtoScale;
double screenExtentX = extentX / viewZ * CenterX;
double screenExtentY = pixelstretch ? screenExtentX * YaspectMul : screenExtentX;
int x1 = MAX((int)(screenX - screenExtentX), 0);
int x2 = MIN((int)(screenX + screenExtentX + 0.5f), viewwidth - 1);
int y1 = MAX((int)(screenY - screenExtentY), 0);
int y2 = MIN((int)(screenY + screenExtentY + 0.5f), viewheight - 1);
int pixelsize = r_swtruecolor ? 4 : 1;
if (y1 < y2)
{
for (int x = x1; x < x2; x++)
{
int columnY1 = MAX(y1, (int)cliptop[x]);
int columnY2 = MIN(y2, (int)clipbottom[x]);
if (columnY1 < columnY2)
{
using namespace drawerargs;
dc_dest = dc_destorg + (dc_pitch * columnY1 + x) * pixelsize;
dc_color = color;
dc_count = columnY2 - columnY1;
R_Drawers()->FillColumn();
2016-12-25 10:07:50 +00:00
}
}
}
}
2017-01-09 13:20:47 +00:00
2017-01-11 17:25:14 +00:00
void RenderVoxel::Deinit()
2017-01-09 13:20:47 +00:00
{
// Free offscreen buffer
if (OffscreenColorBuffer != nullptr)
{
delete[] OffscreenColorBuffer;
OffscreenColorBuffer = nullptr;
}
if (OffscreenCoverageBuffer != nullptr)
{
delete OffscreenCoverageBuffer;
OffscreenCoverageBuffer = nullptr;
}
OffscreenBufferHeight = OffscreenBufferWidth = 0;
}
2017-01-11 17:25:14 +00:00
void RenderVoxel::CheckOffscreenBuffer(int width, int height, bool spansonly)
2017-01-09 13:20:47 +00:00
{
// Allocates the offscreen coverage buffer and optionally the offscreen
// color buffer. If they already exist but are the wrong size, they will
// be reallocated.
if (OffscreenCoverageBuffer == nullptr)
{
assert(OffscreenColorBuffer == nullptr && "The color buffer cannot exist without the coverage buffer");
OffscreenCoverageBuffer = new FCoverageBuffer(width);
}
else if (OffscreenCoverageBuffer->NumLists != (unsigned)width)
{
delete OffscreenCoverageBuffer;
OffscreenCoverageBuffer = new FCoverageBuffer(width);
if (OffscreenColorBuffer != nullptr)
{
delete[] OffscreenColorBuffer;
OffscreenColorBuffer = nullptr;
}
}
else
{
OffscreenCoverageBuffer->Clear();
}
if (!spansonly)
{
if (OffscreenColorBuffer == nullptr)
{
OffscreenColorBuffer = new uint8_t[width * height * 4];
}
else if (OffscreenBufferWidth != width || OffscreenBufferHeight != height)
{
delete[] OffscreenColorBuffer;
OffscreenColorBuffer = new uint8_t[width * height * 4];
}
}
OffscreenBufferWidth = width;
OffscreenBufferHeight = height;
}
2017-01-11 17:25:14 +00:00
FCoverageBuffer *RenderVoxel::OffscreenCoverageBuffer;
int RenderVoxel::OffscreenBufferWidth;
int RenderVoxel::OffscreenBufferHeight;
uint8_t *RenderVoxel::OffscreenColorBuffer;
2017-01-09 13:20:47 +00:00
////////////////////////////////////////////////////////////////////////////
FCoverageBuffer::FCoverageBuffer(int lists)
: Spans(nullptr), FreeSpans(nullptr)
{
NumLists = lists;
Spans = new Span *[lists];
memset(Spans, 0, sizeof(Span*)*lists);
}
FCoverageBuffer::~FCoverageBuffer()
{
if (Spans != nullptr)
{
delete[] Spans;
}
}
void FCoverageBuffer::Clear()
{
SpanArena.FreeAll();
memset(Spans, 0, sizeof(Span*)*NumLists);
FreeSpans = nullptr;
}
void FCoverageBuffer::InsertSpan(int listnum, int start, int stop)
{
// start is inclusive.
// stop is exclusive.
assert(unsigned(listnum) < NumLists);
assert(start < stop);
Span **span_p = &Spans[listnum];
Span *span;
if (*span_p == nullptr || (*span_p)->Start > stop)
{ // This list is empty or the first entry is after this one, so we can just insert the span.
goto addspan;
}
// Insert the new span in order, merging with existing ones.
while (*span_p != nullptr)
{
if ((*span_p)->Stop < start) // ===== (existing span)
{ // Span ends before this one starts. // ++++ (new span)
span_p = &(*span_p)->NextSpan;
continue;
}
// Does the new span overlap or abut the existing one?
if ((*span_p)->Start <= start)
{
if ((*span_p)->Stop >= stop) // =============
{ // The existing span completely covers this one. // +++++
return;
}
extend: // Extend the existing span with the new one. // ======
span = *span_p; // +++++++
span->Stop = stop; // (or) +++++
// Free up any spans we just covered up.
span_p = &(*span_p)->NextSpan;
while (*span_p != nullptr && (*span_p)->Start <= stop && (*span_p)->Stop <= stop)
{
Span *span = *span_p; // ====== ======
*span_p = span->NextSpan; // +++++++++++++
span->NextSpan = FreeSpans;
FreeSpans = span;
}
if (*span_p != nullptr && (*span_p)->Start <= stop) // ======= ========
{ // Our new span connects two existing spans. // ++++++++++++++
// They should all be collapsed into a single span.
span->Stop = (*span_p)->Stop;
span = *span_p;
*span_p = span->NextSpan;
span->NextSpan = FreeSpans;
FreeSpans = span;
}
goto check;
}
else if ((*span_p)->Start <= stop) // =====
{ // The new span extends the existing span from // ++++
// the beginning. // (or) ++++
(*span_p)->Start = start;
if ((*span_p)->Stop < stop)
{ // The new span also extends the existing span // ======
// at the bottom // ++++++++++++++
goto extend;
}
goto check;
}
else // ======
{ // No overlap, so insert a new span. // +++++
goto addspan;
}
}
// Append a new span to the end of the list.
addspan:
span = AllocSpan();
span->NextSpan = *span_p;
span->Start = start;
span->Stop = stop;
*span_p = span;
check:
#ifdef _DEBUG
// Validate the span list: Spans must be in order, and there must be
// at least one pixel between spans.
for (span = Spans[listnum]; span != nullptr; span = span->NextSpan)
{
assert(span->Start < span->Stop);
if (span->NextSpan != nullptr)
{
assert(span->Stop < span->NextSpan->Start);
}
}
#endif
;
}
FCoverageBuffer::Span *FCoverageBuffer::AllocSpan()
{
Span *span;
if (FreeSpans != nullptr)
{
span = FreeSpans;
FreeSpans = span->NextSpan;
}
else
{
span = (Span *)SpanArena.Alloc(sizeof(Span));
}
return span;
}
/////////////////////////////////////////////////////////////////////////
// Old BUILD implementation follows:
//
// This file contains some code from the Build Engine.
//
// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
#if 0
void R_DrawVisVoxel(vissprite_t *spr, int minslabz, int maxslabz, short *cliptop, short *clipbot)
{
int flags = 0;
// Do setup for blending.
R_SetColorMapLight(spr->Style.BaseColormap, 0, spr->Style.ColormapNum << FRACBITS);
bool visible = R_SetPatchStyle(spr->Style.RenderStyle, spr->Style.Alpha, spr->Translation, spr->FillColor);
if (!visible)
{
return;
}
if (colfunc == fuzzcolfunc || colfunc == R_FillColumn)
{
flags = DVF_OFFSCREEN | DVF_SPANSONLY;
}
else if (colfunc != basecolfunc)
{
flags = DVF_OFFSCREEN;
}
if (flags != 0)
{
R_CheckOffscreenBuffer(RenderTarget->GetWidth(), RenderTarget->GetHeight(), !!(flags & DVF_SPANSONLY));
}
if (spr->bInMirror)
{
flags |= DVF_MIRRORED;
}
// Render the voxel, either directly to the screen or offscreen.
R_DrawVoxel(spr->pa.vpos, spr->pa.vang, spr->gpos, spr->Angle,
spr->xscale, FLOAT2FIXED(spr->yscale), spr->voxel, spr->Style.BaseColormap, spr->Style.ColormapNum, cliptop, clipbot,
minslabz, maxslabz, flags);
// Blend the voxel, if that's what we need to do.
if ((flags & ~DVF_MIRRORED) != 0)
{
int pixelsize = r_swtruecolor ? 4 : 1;
for (int x = 0; x < viewwidth; ++x)
{
if (!(flags & DVF_SPANSONLY) && (x & 3) == 0)
{
rt_initcols(OffscreenColorBuffer + x * OffscreenBufferHeight);
}
for (FCoverageBuffer::Span *span = OffscreenCoverageBuffer->Spans[x]; span != NULL; span = span->NextSpan)
{
if (flags & DVF_SPANSONLY)
{
dc_x = x;
dc_yl = span->Start;
dc_yh = span->Stop - 1;
dc_count = span->Stop - span->Start;
dc_dest = (ylookup[span->Start] + x) * pixelsize + dc_destorg;
colfunc();
}
else
{
rt_span_coverage(x, span->Start, span->Stop - 1);
}
}
if (!(flags & DVF_SPANSONLY) && (x & 3) == 3)
{
rt_draw4cols(x - 3);
}
}
}
R_FinishSetPatchStyle();
NetUpdate();
}
void R_DrawVoxel(const FVector3 &globalpos, FAngle viewangle,
const FVector3 &dasprpos, DAngle dasprang,
fixed_t daxscale, fixed_t dayscale, FVoxel *voxobj,
FSWColormap *colormap, int colormapnum, short *daumost, short *dadmost, int minslabz, int maxslabz, int flags)
{
int i, j, k, x, y, syoff, ggxstart, ggystart, nxoff;
fixed_t cosang, sinang, sprcosang, sprsinang;
int backx, backy, gxinc, gyinc;
int daxscalerecip, dayscalerecip, cnt, gxstart, gystart, dazscale;
int lx, rx, nx, ny, x1=0, y1=0, x2=0, y2=0, yinc=0;
int yoff, xs=0, ys=0, xe, ye, xi=0, yi=0, cbackx, cbacky, dagxinc, dagyinc;
kvxslab_t *voxptr, *voxend;
FVoxelMipLevel *mip;
int z1a[64], z2a[64], yplc[64];
const int nytooclose = centerxwide * 2100, nytoofar = 32768*32768 - 1048576;
const int xdimenscale = FLOAT2FIXED(centerxwide * YaspectMul / 160);
const double centerxwide_f = centerxwide;
const double centerxwidebig_f = centerxwide_f * 65536*65536*8;
// Convert to Build's coordinate system.
fixed_t globalposx = xs_Fix<4>::ToFix(globalpos.X);
fixed_t globalposy = xs_Fix<4>::ToFix(-globalpos.Y);
fixed_t globalposz = xs_Fix<8>::ToFix(-globalpos.Z);
fixed_t dasprx = xs_Fix<4>::ToFix(dasprpos.X);
fixed_t daspry = xs_Fix<4>::ToFix(-dasprpos.Y);
fixed_t dasprz = xs_Fix<8>::ToFix(-dasprpos.Z);
// Shift the scales from 16 bits of fractional precision to 6.
// Also do some magic voodoo scaling to make them the right size.
daxscale = daxscale / (0xC000 >> 6);
dayscale = dayscale / (0xC000 >> 6);
if (daxscale <= 0 || dayscale <= 0)
{
// won't be visible.
return;
}
angle_t viewang = viewangle.BAMs();
cosang = FLOAT2FIXED(viewangle.Cos()) >> 2;
sinang = FLOAT2FIXED(-viewangle.Sin()) >> 2;
sprcosang = FLOAT2FIXED(dasprang.Cos()) >> 2;
sprsinang = FLOAT2FIXED(-dasprang.Sin()) >> 2;
R_SetupDrawSlab(colormap, 0.0f, colormapnum << FRACBITS);
int pixelsize = r_swtruecolor ? 4 : 1;
// Select mip level
i = abs(DMulScale6(dasprx - globalposx, cosang, daspry - globalposy, sinang));
i = DivScale6(i, MIN(daxscale, dayscale));
j = xs_Fix<13>::ToFix(FocalLengthX);
for (k = 0; i >= j && k < voxobj->NumMips; ++k)
{
i >>= 1;
}
if (k >= voxobj->NumMips) k = voxobj->NumMips - 1;
mip = &voxobj->Mips[k]; if (mip->SlabData == NULL) return;
minslabz >>= k;
maxslabz >>= k;
daxscale <<= (k+8); dayscale <<= (k+8);
dazscale = FixedDiv(dayscale, FLOAT2FIXED(BaseYaspectMul));
daxscale = fixed_t(daxscale / YaspectMul);
daxscale = Scale(daxscale, xdimenscale, centerxwide << 9);
dayscale = Scale(dayscale, FixedMul(xdimenscale, viewingrangerecip), centerxwide << 9);
daxscalerecip = (1<<30) / daxscale;
dayscalerecip = (1<<30) / dayscale;
fixed_t piv_x = fixed_t(mip->Pivot.X*256.);
fixed_t piv_y = fixed_t(mip->Pivot.Y*256.);
fixed_t piv_z = fixed_t(mip->Pivot.Z*256.);
x = FixedMul(globalposx - dasprx, daxscalerecip);
y = FixedMul(globalposy - daspry, daxscalerecip);
backx = (DMulScale10(x, sprcosang, y, sprsinang) + piv_x) >> 8;
backy = (DMulScale10(y, sprcosang, x, -sprsinang) + piv_y) >> 8;
cbackx = clamp(backx, 0, mip->SizeX - 1);
cbacky = clamp(backy, 0, mip->SizeY - 1);
sprcosang = MulScale14(daxscale, sprcosang);
sprsinang = MulScale14(daxscale, sprsinang);
x = (dasprx - globalposx) - DMulScale18(piv_x, sprcosang, piv_y, -sprsinang);
y = (daspry - globalposy) - DMulScale18(piv_y, sprcosang, piv_x, sprsinang);
cosang = FixedMul(cosang, dayscalerecip);
sinang = FixedMul(sinang, dayscalerecip);
gxstart = y*cosang - x*sinang;
gystart = x*cosang + y*sinang;
gxinc = DMulScale10(sprsinang, cosang, sprcosang, -sinang);
gyinc = DMulScale10(sprcosang, cosang, sprsinang, sinang);
if ((abs(globalposz - dasprz) >> 10) >= abs(dazscale)) return;
x = 0; y = 0; j = MAX(mip->SizeX, mip->SizeY);
fixed_t *ggxinc = (fixed_t *)alloca((j + 1) * sizeof(fixed_t) * 2);
fixed_t *ggyinc = ggxinc + (j + 1);
for (i = 0; i <= j; i++)
{
ggxinc[i] = x; x += gxinc;
ggyinc[i] = y; y += gyinc;
}
syoff = DivScale21(globalposz - dasprz, FixedMul(dazscale, 0xE800)) + (piv_z << 7);
yoff = (abs(gxinc) + abs(gyinc)) >> 1;
for (cnt = 0; cnt < 8; cnt++)
{
switch (cnt)
{
case 0: xs = 0; ys = 0; xi = 1; yi = 1; break;
case 1: xs = mip->SizeX-1; ys = 0; xi = -1; yi = 1; break;
case 2: xs = 0; ys = mip->SizeY-1; xi = 1; yi = -1; break;
case 3: xs = mip->SizeX-1; ys = mip->SizeY-1; xi = -1; yi = -1; break;
case 4: xs = 0; ys = cbacky; xi = 1; yi = 2; break;
case 5: xs = mip->SizeX-1; ys = cbacky; xi = -1; yi = 2; break;
case 6: xs = cbackx; ys = 0; xi = 2; yi = 1; break;
case 7: xs = cbackx; ys = mip->SizeY-1; xi = 2; yi = -1; break;
}
xe = cbackx; ye = cbacky;
if (cnt < 4)
{
if ((xi < 0) && (xe >= xs)) continue;
if ((xi > 0) && (xe <= xs)) continue;
if ((yi < 0) && (ye >= ys)) continue;
if ((yi > 0) && (ye <= ys)) continue;
}
else
{
if ((xi < 0) && (xe > xs)) continue;
if ((xi > 0) && (xe < xs)) continue;
if ((yi < 0) && (ye > ys)) continue;
if ((yi > 0) && (ye < ys)) continue;
xe += xi; ye += yi;
}
i = sgn(ys - backy) + sgn(xs - backx) * 3 + 4;
switch(i)
{
case 6: case 7: x1 = 0; y1 = 0; break;
case 8: case 5: x1 = gxinc; y1 = gyinc; break;
case 0: case 3: x1 = gyinc; y1 = -gxinc; break;
case 2: case 1: x1 = gxinc+gyinc; y1 = gyinc-gxinc; break;
}
switch(i)
{
case 2: case 5: x2 = 0; y2 = 0; break;
case 0: case 1: x2 = gxinc; y2 = gyinc; break;
case 8: case 7: x2 = gyinc; y2 = -gxinc; break;
case 6: case 3: x2 = gxinc+gyinc; y2 = gyinc-gxinc; break;
}
BYTE oand = (1 << int(xs<backx)) + (1 << (int(ys<backy)+2));
BYTE oand16 = oand + 16;
BYTE oand32 = oand + 32;
if (yi > 0) { dagxinc = gxinc; dagyinc = FixedMul(gyinc, viewingrangerecip); }
else { dagxinc = -gxinc; dagyinc = -FixedMul(gyinc, viewingrangerecip); }
/* Fix for non 90 degree viewing ranges */
nxoff = FixedMul(x2 - x1, viewingrangerecip);
x1 = FixedMul(x1, viewingrangerecip);
ggxstart = gxstart + ggyinc[ys];
ggystart = gystart - ggxinc[ys];
for (x = xs; x != xe; x += xi)
{
BYTE *slabxoffs = &mip->SlabData[mip->OffsetX[x]];
short *xyoffs = &mip->OffsetXY[x * (mip->SizeY + 1)];
nx = FixedMul(ggxstart + ggxinc[x], viewingrangerecip) + x1;
ny = ggystart + ggyinc[x];
for (y = ys; y != ye; y += yi, nx += dagyinc, ny -= dagxinc)
{
if ((ny <= nytooclose) || (ny >= nytoofar)) continue;
voxptr = (kvxslab_t *)(slabxoffs + xyoffs[y]);
voxend = (kvxslab_t *)(slabxoffs + xyoffs[y+1]);
if (voxptr >= voxend) continue;
lx = xs_RoundToInt(nx * centerxwide_f / (ny + y1)) + centerx;
if (lx < 0) lx = 0;
rx = xs_RoundToInt((nx + nxoff) * centerxwide_f / (ny + y2)) + centerx;
if (rx > viewwidth) rx = viewwidth;
if (rx <= lx) continue;
if (flags & DVF_MIRRORED)
{
int t = viewwidth - lx;
lx = viewwidth - rx;
rx = t;
}
fixed_t l1 = xs_RoundToInt(centerxwidebig_f / (ny - yoff));
fixed_t l2 = xs_RoundToInt(centerxwidebig_f / (ny + yoff));
for (; voxptr < voxend; voxptr = (kvxslab_t *)((BYTE *)voxptr + voxptr->zleng + 3))
{
const BYTE *col = voxptr->col;
int zleng = voxptr->zleng;
int ztop = voxptr->ztop;
fixed_t z1, z2;
if (ztop < minslabz)
{
int diff = minslabz - ztop;
ztop = minslabz;
col += diff;
zleng -= diff;
}
if (ztop + zleng > maxslabz)
{
int diff = ztop + zleng - maxslabz;
zleng -= diff;
}
if (zleng <= 0) continue;
j = (ztop << 15) - syoff;
if (j < 0)
{
k = j + (zleng << 15);
if (k < 0)
{
if ((voxptr->backfacecull & oand32) == 0) continue;
z2 = MulScale32(l2, k) + centery; /* Below slab */
}
else
{
if ((voxptr->backfacecull & oand) == 0) continue; /* Middle of slab */
z2 = MulScale32(l1, k) + centery;
}
z1 = MulScale32(l1, j) + centery;
}
else
{
if ((voxptr->backfacecull & oand16) == 0) continue;
z1 = MulScale32(l2, j) + centery; /* Above slab */
z2 = MulScale32(l1, j + (zleng << 15)) + centery;
}
if (z2 <= z1) continue;
if (zleng == 1)
{
yinc = 0;
}
else
{
if (z2-z1 >= 1024) yinc = FixedDiv(zleng, z2 - z1);
else yinc = (((1 << 24) - 1) / (z2 - z1)) * zleng >> 8;
}
// [RH] Clip each column separately, not just by the first one.
for (int stripwidth = MIN<int>(countof(z1a), rx - lx), lxt = lx;
lxt < rx;
(lxt += countof(z1a)), stripwidth = MIN<int>(countof(z1a), rx - lxt))
{
// Calculate top and bottom pixels locations
for (int xxx = 0; xxx < stripwidth; ++xxx)
{
if (zleng == 1)
{
yplc[xxx] = 0;
z1a[xxx] = MAX<int>(z1, daumost[lxt + xxx]);
}
else
{
if (z1 < daumost[lxt + xxx])
{
yplc[xxx] = yinc * (daumost[lxt + xxx] - z1);
z1a[xxx] = daumost[lxt + xxx];
}
else
{
yplc[xxx] = 0;
z1a[xxx] = z1;
}
}
z2a[xxx] = MIN<int>(z2, dadmost[lxt + xxx]);
}
// Find top and bottom pixels that match and draw them as one strip
for (int xxl = 0, xxr; xxl < stripwidth; )
{
if (z1a[xxl] >= z2a[xxl])
{ // No column here
xxl++;
continue;
}
int z1 = z1a[xxl];
int z2 = z2a[xxl];
// How many columns share the same extents?
for (xxr = xxl + 1; xxr < stripwidth; ++xxr)
{
if (z1a[xxr] != z1 || z2a[xxr] != z2)
break;
}
if (!(flags & DVF_OFFSCREEN))
{
// Draw directly to the screen.
R_DrawSlab(xxr - xxl, yplc[xxl], z2 - z1, yinc, col, (ylookup[z1] + lxt + xxl) * pixelsize + dc_destorg);
}
else
{
// Record the area covered and possibly draw to an offscreen buffer.
dc_yl = z1;
dc_yh = z2 - 1;
dc_count = z2 - z1;
dc_iscale = yinc;
for (int x = xxl; x < xxr; ++x)
{
OffscreenCoverageBuffer->InsertSpan(lxt + x, z1, z2);
if (!(flags & DVF_SPANSONLY))
{
dc_x = lxt + x;
rt_initcols(OffscreenColorBuffer + (dc_x & ~3) * OffscreenBufferHeight);
dc_source = col;
dc_source2 = nullptr;
dc_texturefrac = yplc[xxl];
hcolfunc_pre();
}
}
}
xxl = xxr;
}
}
}
}
}
}
}
#endif
2016-12-25 10:07:50 +00:00
}