I have no idea why they were even in there, as they intentionally circumvented all GC related features - they declared themselves fixed if prone to getting collected, they all used OF_YesReallyDelete when destroying themselves and they never used any of the object creation or RTTI features, aside from a single assert in V_Init2.
Essentially they were a drag on the system and OF_YesReallyDelete was effectively added just to deal with the canvases which were DObjects but not supposed to behave like them in the first place.
Currently this is only being used for draw operations that are not automap related, i.e. DrawLine, DrawPixel and FillSimplePoly are not subjected to it.
Note that the Strife status bar does not draw the health bars yet. I tried to replace the hacky custom texture with a single fill operation but had to find out that all the coordinate mangling for the status bar is being done deep in the video code. This needs to be fixed before this can be made to work.
Currently this is not usable in mods because they cannot initialize custom status bars yet.
This has increasingly become an obstacle with the hardware renderer, so now the values are being stored as plain data in the sector, with the software renderer getting the actual color tables when needed. While this is a bit slower than storing the pregenerated colormap, in realistic situations the added time is mostly negligible in the microseconds range.
This one was particularly nasty because Windows also defines a DWORD, but in Windows it is an unsigned long, not an unsigned int so changing types caused type conflicts and not all could be removed.
Those referring to the Windows type have to be kept, fortunately they are mostly in the Win32 directory, with a handful of exceptions elsewhere.
Both files can now be included independently without causing problems.
This also required moving some inline functions into separate files and splitting off the GC definitions from dobject.h to ensure that r_defs does not need to pull in any part of the object hierarchy.
Needless to say, this is simply too volatile and would require constant active maintenance, not to mention a huge amount of work up front to get going.
It also hid a nasty problem with the Destroy method. Due to the way the garbage collector works, Destroy cannot be exposed to scripts as-is. It may be called from scripts but it may not be overridden from scripts because the garbage collector can call this function after all data needed for calling a scripted override has already been destroyed because if that data is also being collected there is no guarantee that proper order of destruction is observed. So for now Destroy is just a normal native method to scripted classes
- Polygons will be clipped to bottomclip. If this is zero or below, they
will be clipped to the bottom of the screen instead. This keeps the
polygons from overwriting the status bar border for sofware 2D. The
hardware version ignores it, since it always draws the status bar border
every frame.
This means that the varargs functions themselves are now responsible for parsing them into DrawParms.
This was done because DrawTextV made a blanket assumption that every single vararg has the size of a 32 bit integer and caused crashes when anything else was passed. It also failed to eliminate any tag that is incompatible with text display. These will now abort DrawText and trigger an assert.
In order to avoid passing around tag lists, DrawTextV needs to parse everything itself and then pass a fully initialized structure to DrawTexture. This cannot be done if all variants require a varargs tag list.
Apparently the only reason for the old approach was the 'hw' parameter which was never used.