gzdoom-gles/wadsrc/static/shaders/glsl/main.fp

606 lines
14 KiB
Text
Raw Normal View History

layout(location = 0) in vec4 vTexCoord;
layout(location = 1) in vec4 vColor;
#ifndef SIMPLE // we do not need these for simple shaders
layout(location = 2) in vec4 pixelpos;
layout(location = 3) in vec3 glowdist;
layout(location = 4) in vec3 gradientdist;
layout(location = 5) in vec4 vWorldNormal;
layout(location = 6) in vec4 vEyeNormal;
#endif
layout(location=0) out vec4 FragColor;
#ifdef GBUFFER_PASS
layout(location=1) out vec4 FragFog;
layout(location=2) out vec4 FragNormal;
#endif
struct Material
{
vec4 Base;
vec4 Bright;
vec3 Normal;
vec3 Specular;
float Glossiness;
float SpecularLevel;
float Metallic;
float Roughness;
float AO;
};
vec4 Process(vec4 color);
vec4 ProcessTexel();
Material ProcessMaterial();
vec4 ProcessLight(Material mat, vec4 color);
vec3 ProcessMaterialLight(Material material, vec3 color);
//===========================================================================
//
// Color to grayscale
//
//===========================================================================
float grayscale(vec4 color)
{
return dot(color.rgb, vec3(0.3, 0.56, 0.14));
}
//===========================================================================
//
// Desaturate a color
//
//===========================================================================
vec4 desaturate(vec4 texel)
{
if (uDesaturationFactor > 0.0)
{
float gray = grayscale(texel);
return mix (texel, vec4(gray,gray,gray,texel.a), uDesaturationFactor);
}
else
{
return texel;
}
}
//===========================================================================
//
// This function is common for all (non-special-effect) fragment shaders
//
//===========================================================================
vec4 getTexel(vec2 st)
{
vec4 texel = texture(tex, st);
//
// Apply texture modes
//
switch (uTextureMode)
{
case 1: // TM_STENCIL
texel.rgb = vec3(1.0,1.0,1.0);
break;
case 2: // TM_OPAQUE
texel.a = 1.0;
break;
case 3: // TM_INVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, texel.a);
break;
case 4: // TM_ALPHATEXTURE
{
float gray = grayscale(texel);
texel = vec4(1.0, 1.0, 1.0, gray*texel.a);
break;
}
case 5: // TM_CLAMPY
if (st.t < 0.0 || st.t > 1.0)
{
texel.a = 0.0;
}
break;
case 6: // TM_OPAQUEINVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, 1.0);
break;
case 7: //TM_FOGLAYER
return texel;
}
texel.rgb += uAddColor.rgb;
if (uObjectColor2.a == 0.0) texel *= uObjectColor;
else texel *= mix(uObjectColor, uObjectColor2, gradientdist.z);
return desaturate(texel);
}
//===========================================================================
//
// Vanilla Doom wall colormap equation
//
//===========================================================================
float R_WallColormap(float lightnum, float z, vec3 normal)
{
// R_ScaleFromGlobalAngle calculation
float projection = 160.0; // projection depends on SCREENBLOCKS!! 160 is the fullscreen value
vec2 line_v1 = pixelpos.xz; // in vanilla this is the first curline vertex
vec2 line_normal = normal.xz;
float texscale = projection * clamp(dot(normalize(uCameraPos.xz - line_v1), line_normal), 0.0, 1.0) / z;
float lightz = clamp(16.0 * texscale, 0.0, 47.0);
// scalelight[lightnum][lightz] lookup
float startmap = (15.0 - lightnum) * 4.0;
return startmap - lightz * 0.5;
}
//===========================================================================
//
// Vanilla Doom plane colormap equation
//
//===========================================================================
float R_PlaneColormap(float lightnum, float z)
{
float lightz = clamp(z / 16.0f, 0.0, 127.0);
// zlight[lightnum][lightz] lookup
float startmap = (15.0 - lightnum) * 4.0;
float scale = 160.0 / (lightz + 1.0);
return startmap - scale * 0.5;
}
//===========================================================================
//
// zdoom colormap equation
//
//===========================================================================
float R_ZDoomColormap(float light, float z)
{
float L = light * 255.0;
float vis = min(uGlobVis / z, 24.0 / 32.0);
float shade = 2.0 - (L + 12.0) / 128.0;
float lightscale = shade - vis;
return lightscale * 31.0;
}
float R_DoomColormap(float light, float z)
{
if ((uPalLightLevels >> 16) == 16) // gl_lightmode 16
{
float lightnum = clamp(light * 15.0, 0.0, 15.0);
if (dot(vWorldNormal.xyz, vWorldNormal.xyz) > 0.5)
{
vec3 normal = normalize(vWorldNormal.xyz);
return mix(R_WallColormap(lightnum, z, normal), R_PlaneColormap(lightnum, z), abs(normal.y));
}
else // vWorldNormal is not set on sprites
{
return R_PlaneColormap(lightnum, z);
}
}
else
{
return R_ZDoomColormap(light, z);
}
}
//===========================================================================
//
// Doom software lighting equation
//
//===========================================================================
float R_DoomLightingEquation(float light)
{
// z is the depth in view space, positive going into the screen
float z;
if (((uPalLightLevels >> 8) & 0xff) == 2)
{
z = distance(pixelpos.xyz, uCameraPos.xyz);
}
else
{
z = pixelpos.w;
}
float colormap = R_DoomColormap(light, z);
if ((uPalLightLevels & 0xff) != 0)
colormap = floor(colormap) + 0.5;
// Result is the normalized colormap index (0 bright .. 1 dark)
return clamp(colormap, 0.0, 31.0) / 32.0;
}
//===========================================================================
//
// Check if light is in shadow according to its 1D shadow map
//
//===========================================================================
#ifdef SUPPORTS_SHADOWMAPS
float shadowDirToU(vec2 dir)
{
if (abs(dir.y) > abs(dir.x))
{
float x = dir.x / dir.y * 0.125;
if (dir.y >= 0.0)
return 0.125 + x;
else
return (0.50 + 0.125) + x;
}
else
{
float y = dir.y / dir.x * 0.125;
if (dir.x >= 0.0)
return (0.25 + 0.125) - y;
else
return (0.75 + 0.125) - y;
}
}
vec2 shadowUToDir(float u)
{
u *= 4.0;
vec2 raydir;
switch (int(u))
{
case 0: raydir = vec2(u * 2.0 - 1.0, 1.0); break;
case 1: raydir = vec2(1.0, 1.0 - (u - 1.0) * 2.0); break;
case 2: raydir = vec2(1.0 - (u - 2.0) * 2.0, -1.0); break;
case 3: raydir = vec2(-1.0, (u - 3.0) * 2.0 - 1.0); break;
}
return raydir;
}
float sampleShadowmap(vec3 planePoint, float v)
{
float bias = 1.0;
float negD = dot(vWorldNormal.xyz, planePoint);
vec3 ray = planePoint;
vec2 isize = textureSize(ShadowMap, 0);
float scale = float(isize.x) * 0.25;
// Snap to shadow map texel grid
if (abs(ray.z) > abs(ray.x))
{
ray.y = ray.y / abs(ray.z);
ray.x = ray.x / abs(ray.z);
ray.x = (floor((ray.x + 1.0) * 0.5 * scale) + 0.5) / scale * 2.0 - 1.0;
ray.z = sign(ray.z);
}
else
{
ray.y = ray.y / abs(ray.x);
ray.z = ray.z / abs(ray.x);
ray.z = (floor((ray.z + 1.0) * 0.5 * scale) + 0.5) / scale * 2.0 - 1.0;
ray.x = sign(ray.x);
}
float t = negD / dot(vWorldNormal.xyz, ray) - bias;
vec2 dir = ray.xz * t;
float u = shadowDirToU(dir);
float dist2 = dot(dir, dir);
return step(dist2, texture(ShadowMap, vec2(u, v)).x);
}
float sampleShadowmapPCF(vec3 planePoint, float v)
{
float bias = 1.0;
float negD = dot(vWorldNormal.xyz, planePoint);
vec3 ray = planePoint;
if (abs(ray.z) > abs(ray.x))
ray.y = ray.y / abs(ray.z);
else
ray.y = ray.y / abs(ray.x);
vec2 isize = textureSize(ShadowMap, 0);
float scale = float(isize.x);
float texelPos = floor(shadowDirToU(ray.xz) * scale);
float sum = 0.0;
float step_count = uShadowmapFilter;
texelPos -= step_count + 0.5;
for (float x = -step_count; x <= step_count; x++)
{
float u = fract(texelPos / scale);
vec2 dir = shadowUToDir(u);
ray.x = dir.x;
ray.z = dir.y;
float t = negD / dot(vWorldNormal.xyz, ray) - bias;
dir = ray.xz * t;
float dist2 = dot(dir, dir);
sum += step(dist2, texture(ShadowMap, vec2(u, v)).x);
texelPos++;
}
return sum / (uShadowmapFilter * 2.0 + 1.0);
}
2017-03-08 00:35:07 +00:00
float shadowmapAttenuation(vec4 lightpos, float shadowIndex)
{
if (shadowIndex >= 1024.0)
return 1.0; // No shadowmap available for this light
vec3 planePoint = pixelpos.xyz - lightpos.xyz;
planePoint += 0.01; // nudge light position slightly as Doom maps tend to have their lights perfectly aligned with planes
if (dot(planePoint.xz, planePoint.xz) < 1.0)
return 1.0; // Light is too close
float v = (shadowIndex + 0.5) / 1024.0;
if (uShadowmapFilter <= 0)
{
return sampleShadowmap(planePoint, v);
}
else
{
return sampleShadowmapPCF(planePoint, v);
2017-03-08 00:35:07 +00:00
}
}
float shadowAttenuation(vec4 lightpos, float lightcolorA)
{
float shadowIndex = abs(lightcolorA) - 1.0;
return shadowmapAttenuation(lightpos, shadowIndex);
}
#else
float shadowAttenuation(vec4 lightpos, float lightcolorA)
{
return 1.0;
}
#endif
float spotLightAttenuation(vec4 lightpos, vec3 spotdir, float lightCosInnerAngle, float lightCosOuterAngle)
{
vec3 lightDirection = normalize(lightpos.xyz - pixelpos.xyz);
float cosDir = dot(lightDirection, spotdir);
return smoothstep(lightCosOuterAngle, lightCosInnerAngle, cosDir);
}
//===========================================================================
//
// Adjust normal vector according to the normal map
//
//===========================================================================
#if defined(NORMALMAP)
mat3 cotangent_frame(vec3 n, vec3 p, vec2 uv)
{
// get edge vectors of the pixel triangle
vec3 dp1 = dFdx(p);
vec3 dp2 = dFdy(p);
vec2 duv1 = dFdx(uv);
vec2 duv2 = dFdy(uv);
// solve the linear system
vec3 dp2perp = cross(n, dp2); // cross(dp2, n);
vec3 dp1perp = cross(dp1, n); // cross(n, dp1);
vec3 t = dp2perp * duv1.x + dp1perp * duv2.x;
vec3 b = dp2perp * duv1.y + dp1perp * duv2.y;
// construct a scale-invariant frame
float invmax = inversesqrt(max(dot(t,t), dot(b,b)));
return mat3(t * invmax, b * invmax, n);
}
vec3 ApplyNormalMap(vec2 texcoord)
{
#define WITH_NORMALMAP_UNSIGNED
#define WITH_NORMALMAP_GREEN_UP
//#define WITH_NORMALMAP_2CHANNEL
vec3 interpolatedNormal = normalize(vWorldNormal.xyz);
vec3 map = texture(normaltexture, texcoord).xyz;
#if defined(WITH_NORMALMAP_UNSIGNED)
map = map * 255./127. - 128./127.; // Math so "odd" because 0.5 cannot be precisely described in an unsigned format
#endif
#if defined(WITH_NORMALMAP_2CHANNEL)
map.z = sqrt(1 - dot(map.xy, map.xy));
#endif
#if defined(WITH_NORMALMAP_GREEN_UP)
map.y = -map.y;
#endif
mat3 tbn = cotangent_frame(interpolatedNormal, pixelpos.xyz, vTexCoord.st);
vec3 bumpedNormal = normalize(tbn * map);
return bumpedNormal;
}
#else
vec3 ApplyNormalMap(vec2 texcoord)
{
return normalize(vWorldNormal.xyz);
}
#endif
//===========================================================================
//
// Calculate light
//
// It is important to note that the light color is not desaturated
// due to ZDoom's implementation weirdness. Everything that's added
// on top of it, e.g. dynamic lights and glows are, though, because
// the objects emitting these lights are also.
//
// This is making this a bit more complicated than it needs to
// because we can't just desaturate the final fragment color.
//
//===========================================================================
vec4 getLightColor(Material material, float fogdist, float fogfactor)
{
vec4 color = vColor;
if (uLightLevel >= 0.0)
{
float newlightlevel = 1.0 - R_DoomLightingEquation(uLightLevel);
color.rgb *= newlightlevel;
}
else if (uFogEnabled > 0)
{
// brightening around the player for light mode 2
if (fogdist < uLightDist)
{
color.rgb *= uLightFactor - (fogdist / uLightDist) * (uLightFactor - 1.0);
}
//
// apply light diminishing through fog equation
//
color.rgb = mix(vec3(0.0, 0.0, 0.0), color.rgb, fogfactor);
}
//
// handle glowing walls
//
if (uGlowTopColor.a > 0.0 && glowdist.x < uGlowTopColor.a)
{
color.rgb += desaturate(uGlowTopColor * (1.0 - glowdist.x / uGlowTopColor.a)).rgb;
}
if (uGlowBottomColor.a > 0.0 && glowdist.y < uGlowBottomColor.a)
{
color.rgb += desaturate(uGlowBottomColor * (1.0 - glowdist.y / uGlowBottomColor.a)).rgb;
}
color = min(color, 1.0);
//
// apply brightmaps (or other light manipulation by custom shaders.
//
color = ProcessLight(material, color);
//
// apply dynamic lights
//
return vec4(ProcessMaterialLight(material, color.rgb), material.Base.a * vColor.a);
}
//===========================================================================
//
// Applies colored fog
//
//===========================================================================
vec4 applyFog(vec4 frag, float fogfactor)
{
return vec4(mix(uFogColor.rgb, frag.rgb, fogfactor), frag.a);
}
//===========================================================================
//
// The color of the fragment if it is fully occluded by ambient lighting
//
//===========================================================================
vec3 AmbientOcclusionColor()
{
float fogdist;
float fogfactor;
//
// calculate fog factor
//
if (uFogEnabled == -1)
{
fogdist = max(16.0, pixelpos.w);
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
return mix(uFogColor.rgb, vec3(0.0), fogfactor);
}
//===========================================================================
//
// Main shader routine
//
//===========================================================================
void main()
{
Material material = ProcessMaterial();
vec4 frag = material.Base;
#ifndef NO_ALPHATEST
if (frag.a <= uAlphaThreshold) discard;
#endif
if (uFogEnabled != -3) // check for special 2D 'fog' mode.
{
float fogdist = 0.0;
float fogfactor = 0.0;
//
// calculate fog factor
//
if (uFogEnabled != 0)
{
if (uFogEnabled == 1 || uFogEnabled == -1)
{
fogdist = max(16.0, pixelpos.w);
}
else
{
fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz));
}
fogfactor = exp2 (uFogDensity * fogdist);
}
if (uTextureMode != 7)
{
frag = getLightColor(material, fogdist, fogfactor);
//
// colored fog
//
if (uFogEnabled < 0)
{
frag = applyFog(frag, fogfactor);
}
}
else
{
frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * vColor.a);
}
}
else // simple 2D (uses the fog color to add a color overlay)
{
if (uTextureMode == 7)
{
float gray = grayscale(frag);
vec4 cm = (uObjectColor + gray * (uObjectColor2 - uObjectColor)) * 2;
frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a);
}
frag = frag * ProcessLight(material, vColor);
frag.rgb = frag.rgb + uFogColor.rgb;
}
FragColor = frag;
#ifdef GBUFFER_PASS
FragFog = vec4(AmbientOcclusionColor(), 1.0);
FragNormal = vec4(vEyeNormal.xyz * 0.5 + 0.5, 1.0);
#endif
}