mirror of
https://github.com/DrBeef/Raze.git
synced 2024-11-22 20:21:20 +00:00
831 lines
25 KiB
C++
831 lines
25 KiB
C++
/*
|
|
ISC License
|
|
|
|
Copyright (c) 2015, Mapbox
|
|
|
|
Permission to use, copy, modify, and/or distribute this software for any purpose
|
|
with or without fee is hereby granted, provided that the above copyright notice
|
|
and this permission notice appear in all copies.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
|
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
|
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
|
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
|
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
|
THIS SOFTWARE.
|
|
*/
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace mapbox {
|
|
|
|
namespace util {
|
|
|
|
template <std::size_t I, typename T> struct nth {
|
|
inline static typename std::tuple_element<I, T>::type
|
|
get(const T& t) { return std::get<I>(t); };
|
|
};
|
|
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
template <typename N = uint32_t>
|
|
class Earcut {
|
|
public:
|
|
std::vector<N> indices;
|
|
std::size_t vertices = 0;
|
|
|
|
template <typename Polygon>
|
|
void operator()(const Polygon& points);
|
|
|
|
private:
|
|
struct Node {
|
|
Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
|
|
Node(const Node&) = delete;
|
|
Node& operator=(const Node&) = delete;
|
|
Node(Node&&) = delete;
|
|
Node& operator=(Node&&) = delete;
|
|
|
|
const N i;
|
|
const double x;
|
|
const double y;
|
|
|
|
// previous and next vertice nodes in a polygon ring
|
|
Node* prev = nullptr;
|
|
Node* next = nullptr;
|
|
|
|
// z-order curve value
|
|
int32_t z = 0;
|
|
|
|
// previous and next nodes in z-order
|
|
Node* prevZ = nullptr;
|
|
Node* nextZ = nullptr;
|
|
|
|
// indicates whether this is a steiner point
|
|
bool steiner = false;
|
|
};
|
|
|
|
template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
|
|
Node* filterPoints(Node* start, Node* end = nullptr);
|
|
void earcutLinked(Node* ear, int pass = 0);
|
|
bool isEar(Node* ear);
|
|
bool isEarHashed(Node* ear);
|
|
Node* cureLocalIntersections(Node* start);
|
|
void splitEarcut(Node* start);
|
|
template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
|
|
void eliminateHole(Node* hole, Node* outerNode);
|
|
Node* findHoleBridge(Node* hole, Node* outerNode);
|
|
bool sectorContainsSector(const Node* m, const Node* p);
|
|
void indexCurve(Node* start);
|
|
Node* sortLinked(Node* list);
|
|
int32_t zOrder(const double x_, const double y_);
|
|
Node* getLeftmost(Node* start);
|
|
bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
|
|
bool isValidDiagonal(Node* a, Node* b);
|
|
double area(const Node* p, const Node* q, const Node* r) const;
|
|
bool equals(const Node* p1, const Node* p2);
|
|
bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
|
|
bool onSegment(const Node* p, const Node* q, const Node* r);
|
|
int sign(double val);
|
|
bool intersectsPolygon(const Node* a, const Node* b);
|
|
bool locallyInside(const Node* a, const Node* b);
|
|
bool middleInside(const Node* a, const Node* b);
|
|
Node* splitPolygon(Node* a, Node* b);
|
|
template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
|
|
void removeNode(Node* p);
|
|
|
|
bool hashing;
|
|
double minX, maxX;
|
|
double minY, maxY;
|
|
double inv_size = 0;
|
|
|
|
template <typename T, typename Alloc = std::allocator<T>>
|
|
class ObjectPool {
|
|
public:
|
|
ObjectPool() { }
|
|
ObjectPool(std::size_t blockSize_) {
|
|
reset(blockSize_);
|
|
}
|
|
~ObjectPool() {
|
|
clear();
|
|
}
|
|
template <typename... Args>
|
|
T* construct(Args&&... args) {
|
|
if (currentIndex >= blockSize) {
|
|
currentBlock = alloc_traits::allocate(alloc, blockSize);
|
|
allocations.emplace_back(currentBlock);
|
|
currentIndex = 0;
|
|
}
|
|
T* object = ¤tBlock[currentIndex++];
|
|
alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
|
|
return object;
|
|
}
|
|
void reset(std::size_t newBlockSize) {
|
|
for (auto allocation : allocations) {
|
|
alloc_traits::deallocate(alloc, allocation, blockSize);
|
|
}
|
|
allocations.clear();
|
|
blockSize = std::max<std::size_t>(1, newBlockSize);
|
|
currentBlock = nullptr;
|
|
currentIndex = blockSize;
|
|
}
|
|
void clear() { reset(blockSize); }
|
|
private:
|
|
T* currentBlock = nullptr;
|
|
std::size_t currentIndex = 1;
|
|
std::size_t blockSize = 1;
|
|
std::vector<T*> allocations;
|
|
Alloc alloc;
|
|
typedef typename std::allocator_traits<Alloc> alloc_traits;
|
|
};
|
|
ObjectPool<Node> nodes;
|
|
};
|
|
|
|
template <typename N> template <typename Polygon>
|
|
void Earcut<N>::operator()(const Polygon& points) {
|
|
// reset
|
|
indices.clear();
|
|
vertices = 0;
|
|
|
|
if (points.empty()) return;
|
|
|
|
double x;
|
|
double y;
|
|
int threshold = 80;
|
|
std::size_t len = 0;
|
|
|
|
for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
|
|
threshold -= static_cast<int>(points[i].size());
|
|
len += points[i].size();
|
|
}
|
|
|
|
//estimate size of nodes and indices
|
|
nodes.reset(len * 3 / 2);
|
|
indices.reserve(len + points[0].size());
|
|
|
|
Node* outerNode = linkedList(points[0], true);
|
|
if (!outerNode || outerNode->prev == outerNode->next) return;
|
|
|
|
if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
|
|
|
|
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
|
hashing = threshold < 0;
|
|
if (hashing) {
|
|
Node* p = outerNode->next;
|
|
minX = maxX = outerNode->x;
|
|
minY = maxY = outerNode->y;
|
|
do {
|
|
x = p->x;
|
|
y = p->y;
|
|
minX = std::min<double>(minX, x);
|
|
minY = std::min<double>(minY, y);
|
|
maxX = std::max<double>(maxX, x);
|
|
maxY = std::max<double>(maxY, y);
|
|
p = p->next;
|
|
} while (p != outerNode);
|
|
|
|
// minX, minY and size are later used to transform coords into integers for z-order calculation
|
|
inv_size = std::max<double>(maxX - minX, maxY - minY);
|
|
inv_size = inv_size != .0 ? (1. / inv_size) : .0;
|
|
}
|
|
|
|
earcutLinked(outerNode);
|
|
|
|
nodes.clear();
|
|
}
|
|
|
|
// create a circular doubly linked list from polygon points in the specified winding order
|
|
template <typename N> template <typename Ring>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
|
|
using Point = typename Ring::value_type;
|
|
double sum = 0;
|
|
const std::size_t len = points.size();
|
|
std::size_t i, j;
|
|
Node* last = nullptr;
|
|
|
|
// calculate original winding order of a polygon ring
|
|
for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
|
|
const auto& p1 = points[i];
|
|
const auto& p2 = points[j];
|
|
const double p20 = util::nth<0, Point>::get(p2);
|
|
const double p10 = util::nth<0, Point>::get(p1);
|
|
const double p11 = util::nth<1, Point>::get(p1);
|
|
const double p21 = util::nth<1, Point>::get(p2);
|
|
sum += (p20 - p10) * (p11 + p21);
|
|
}
|
|
|
|
// link points into circular doubly-linked list in the specified winding order
|
|
if (clockwise == (sum > 0)) {
|
|
for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
|
|
} else {
|
|
for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
|
|
}
|
|
|
|
if (last && equals(last, last->next)) {
|
|
removeNode(last);
|
|
last = last->next;
|
|
}
|
|
|
|
vertices += len;
|
|
|
|
return last;
|
|
}
|
|
|
|
// eliminate colinear or duplicate points
|
|
template <typename N>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::filterPoints(Node* start, Node* end) {
|
|
if (!end) end = start;
|
|
|
|
Node* p = start;
|
|
bool again;
|
|
do {
|
|
again = false;
|
|
|
|
if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
|
|
removeNode(p);
|
|
p = end = p->prev;
|
|
|
|
if (p == p->next) break;
|
|
again = true;
|
|
|
|
} else {
|
|
p = p->next;
|
|
}
|
|
} while (again || p != end);
|
|
|
|
return end;
|
|
}
|
|
|
|
// main ear slicing loop which triangulates a polygon (given as a linked list)
|
|
template <typename N>
|
|
void Earcut<N>::earcutLinked(Node* ear, int pass) {
|
|
if (!ear) return;
|
|
|
|
// interlink polygon nodes in z-order
|
|
if (!pass && hashing) indexCurve(ear);
|
|
|
|
Node* stop = ear;
|
|
Node* prev;
|
|
Node* next;
|
|
|
|
int iterations = 0;
|
|
|
|
// iterate through ears, slicing them one by one
|
|
while (ear->prev != ear->next) {
|
|
iterations++;
|
|
prev = ear->prev;
|
|
next = ear->next;
|
|
|
|
if (hashing ? isEarHashed(ear) : isEar(ear)) {
|
|
// cut off the triangle
|
|
indices.emplace_back(prev->i);
|
|
indices.emplace_back(ear->i);
|
|
indices.emplace_back(next->i);
|
|
|
|
removeNode(ear);
|
|
|
|
// skipping the next vertice leads to less sliver triangles
|
|
ear = next->next;
|
|
stop = next->next;
|
|
|
|
continue;
|
|
}
|
|
|
|
ear = next;
|
|
|
|
// if we looped through the whole remaining polygon and can't find any more ears
|
|
if (ear == stop) {
|
|
// try filtering points and slicing again
|
|
if (!pass) earcutLinked(filterPoints(ear), 1);
|
|
|
|
// if this didn't work, try curing all small self-intersections locally
|
|
else if (pass == 1) {
|
|
ear = cureLocalIntersections(filterPoints(ear));
|
|
earcutLinked(ear, 2);
|
|
|
|
// as a last resort, try splitting the remaining polygon into two
|
|
} else if (pass == 2) splitEarcut(ear);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check whether a polygon node forms a valid ear with adjacent nodes
|
|
template <typename N>
|
|
bool Earcut<N>::isEar(Node* ear) {
|
|
const Node* a = ear->prev;
|
|
const Node* b = ear;
|
|
const Node* c = ear->next;
|
|
|
|
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
|
|
|
// now make sure we don't have other points inside the potential ear
|
|
Node* p = ear->next->next;
|
|
|
|
while (p != ear->prev) {
|
|
if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
|
area(p->prev, p, p->next) >= 0) return false;
|
|
p = p->next;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename N>
|
|
bool Earcut<N>::isEarHashed(Node* ear) {
|
|
const Node* a = ear->prev;
|
|
const Node* b = ear;
|
|
const Node* c = ear->next;
|
|
|
|
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
|
|
|
// triangle bbox; min & max are calculated like this for speed
|
|
const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
|
|
const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
|
|
const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
|
|
const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
|
|
|
|
// z-order range for the current triangle bbox;
|
|
const int32_t minZ = zOrder(minTX, minTY);
|
|
const int32_t maxZ = zOrder(maxTX, maxTY);
|
|
|
|
// first look for points inside the triangle in increasing z-order
|
|
Node* p = ear->nextZ;
|
|
|
|
while (p && p->z <= maxZ) {
|
|
if (p != ear->prev && p != ear->next &&
|
|
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
|
area(p->prev, p, p->next) >= 0) return false;
|
|
p = p->nextZ;
|
|
}
|
|
|
|
// then look for points in decreasing z-order
|
|
p = ear->prevZ;
|
|
|
|
while (p && p->z >= minZ) {
|
|
if (p != ear->prev && p != ear->next &&
|
|
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
|
area(p->prev, p, p->next) >= 0) return false;
|
|
p = p->prevZ;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// go through all polygon nodes and cure small local self-intersections
|
|
template <typename N>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::cureLocalIntersections(Node* start) {
|
|
Node* p = start;
|
|
do {
|
|
Node* a = p->prev;
|
|
Node* b = p->next->next;
|
|
|
|
// a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
|
|
if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
|
|
indices.emplace_back(a->i);
|
|
indices.emplace_back(p->i);
|
|
indices.emplace_back(b->i);
|
|
|
|
// remove two nodes involved
|
|
removeNode(p);
|
|
removeNode(p->next);
|
|
|
|
p = start = b;
|
|
}
|
|
p = p->next;
|
|
} while (p != start);
|
|
|
|
return filterPoints(p);
|
|
}
|
|
|
|
// try splitting polygon into two and triangulate them independently
|
|
template <typename N>
|
|
void Earcut<N>::splitEarcut(Node* start) {
|
|
// look for a valid diagonal that divides the polygon into two
|
|
Node* a = start;
|
|
do {
|
|
Node* b = a->next->next;
|
|
while (b != a->prev) {
|
|
if (a->i != b->i && isValidDiagonal(a, b)) {
|
|
// split the polygon in two by the diagonal
|
|
Node* c = splitPolygon(a, b);
|
|
|
|
// filter colinear points around the cuts
|
|
a = filterPoints(a, a->next);
|
|
c = filterPoints(c, c->next);
|
|
|
|
// run earcut on each half
|
|
earcutLinked(a);
|
|
earcutLinked(c);
|
|
return;
|
|
}
|
|
b = b->next;
|
|
}
|
|
a = a->next;
|
|
} while (a != start);
|
|
}
|
|
|
|
// link every hole into the outer loop, producing a single-ring polygon without holes
|
|
template <typename N> template <typename Polygon>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
|
|
const size_t len = points.size();
|
|
|
|
std::vector<Node*> queue;
|
|
for (size_t i = 1; i < len; i++) {
|
|
Node* list = linkedList(points[i], false);
|
|
if (list) {
|
|
if (list == list->next) list->steiner = true;
|
|
queue.push_back(getLeftmost(list));
|
|
}
|
|
}
|
|
std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
|
|
return a->x < b->x;
|
|
});
|
|
|
|
// process holes from left to right
|
|
for (size_t i = 0; i < queue.size(); i++) {
|
|
eliminateHole(queue[i], outerNode);
|
|
outerNode = filterPoints(outerNode, outerNode->next);
|
|
}
|
|
|
|
return outerNode;
|
|
}
|
|
|
|
// find a bridge between vertices that connects hole with an outer ring and and link it
|
|
template <typename N>
|
|
void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
|
|
outerNode = findHoleBridge(hole, outerNode);
|
|
if (outerNode) {
|
|
Node* b = splitPolygon(outerNode, hole);
|
|
|
|
// filter out colinear points around cuts
|
|
filterPoints(outerNode, outerNode->next);
|
|
filterPoints(b, b->next);
|
|
}
|
|
}
|
|
|
|
// David Eberly's algorithm for finding a bridge between hole and outer polygon
|
|
template <typename N>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
|
|
Node* p = outerNode;
|
|
double hx = hole->x;
|
|
double hy = hole->y;
|
|
double qx = -std::numeric_limits<double>::infinity();
|
|
Node* m = nullptr;
|
|
|
|
// find a segment intersected by a ray from the hole's leftmost Vertex to the left;
|
|
// segment's endpoint with lesser x will be potential connection Vertex
|
|
do {
|
|
if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
|
|
double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
|
|
if (x <= hx && x > qx) {
|
|
qx = x;
|
|
if (x == hx) {
|
|
if (hy == p->y) return p;
|
|
if (hy == p->next->y) return p->next;
|
|
}
|
|
m = p->x < p->next->x ? p : p->next;
|
|
}
|
|
}
|
|
p = p->next;
|
|
} while (p != outerNode);
|
|
|
|
if (!m) return 0;
|
|
|
|
if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint
|
|
|
|
// look for points inside the triangle of hole Vertex, segment intersection and endpoint;
|
|
// if there are no points found, we have a valid connection;
|
|
// otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
|
|
|
|
const Node* stop = m;
|
|
double tanMin = std::numeric_limits<double>::infinity();
|
|
double tanCur = 0;
|
|
|
|
p = m;
|
|
double mx = m->x;
|
|
double my = m->y;
|
|
|
|
do {
|
|
if (hx >= p->x && p->x >= mx && hx != p->x &&
|
|
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
|
|
|
|
tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
|
|
|
|
if (locallyInside(p, hole) &&
|
|
(tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
|
|
m = p;
|
|
tanMin = tanCur;
|
|
}
|
|
}
|
|
|
|
p = p->next;
|
|
} while (p != stop);
|
|
|
|
return m;
|
|
}
|
|
|
|
// whether sector in vertex m contains sector in vertex p in the same coordinates
|
|
template <typename N>
|
|
bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) {
|
|
return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
|
|
}
|
|
|
|
// interlink polygon nodes in z-order
|
|
template <typename N>
|
|
void Earcut<N>::indexCurve(Node* start) {
|
|
assert(start);
|
|
Node* p = start;
|
|
|
|
do {
|
|
p->z = p->z ? p->z : zOrder(p->x, p->y);
|
|
p->prevZ = p->prev;
|
|
p->nextZ = p->next;
|
|
p = p->next;
|
|
} while (p != start);
|
|
|
|
p->prevZ->nextZ = nullptr;
|
|
p->prevZ = nullptr;
|
|
|
|
sortLinked(p);
|
|
}
|
|
|
|
// Simon Tatham's linked list merge sort algorithm
|
|
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
|
template <typename N>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::sortLinked(Node* list) {
|
|
assert(list);
|
|
Node* p;
|
|
Node* q;
|
|
Node* e;
|
|
Node* tail;
|
|
int i, numMerges, pSize, qSize;
|
|
int inSize = 1;
|
|
|
|
for (;;) {
|
|
p = list;
|
|
list = nullptr;
|
|
tail = nullptr;
|
|
numMerges = 0;
|
|
|
|
while (p) {
|
|
numMerges++;
|
|
q = p;
|
|
pSize = 0;
|
|
for (i = 0; i < inSize; i++) {
|
|
pSize++;
|
|
q = q->nextZ;
|
|
if (!q) break;
|
|
}
|
|
|
|
qSize = inSize;
|
|
|
|
while (pSize > 0 || (qSize > 0 && q)) {
|
|
|
|
if (pSize == 0) {
|
|
e = q;
|
|
q = q->nextZ;
|
|
qSize--;
|
|
} else if (qSize == 0 || !q) {
|
|
e = p;
|
|
p = p->nextZ;
|
|
pSize--;
|
|
} else if (p->z <= q->z) {
|
|
e = p;
|
|
p = p->nextZ;
|
|
pSize--;
|
|
} else {
|
|
e = q;
|
|
q = q->nextZ;
|
|
qSize--;
|
|
}
|
|
|
|
if (tail) tail->nextZ = e;
|
|
else list = e;
|
|
|
|
e->prevZ = tail;
|
|
tail = e;
|
|
}
|
|
|
|
p = q;
|
|
}
|
|
|
|
tail->nextZ = nullptr;
|
|
|
|
if (numMerges <= 1) return list;
|
|
|
|
inSize *= 2;
|
|
}
|
|
}
|
|
|
|
// z-order of a Vertex given coords and size of the data bounding box
|
|
template <typename N>
|
|
int32_t Earcut<N>::zOrder(const double x_, const double y_) {
|
|
// coords are transformed into non-negative 15-bit integer range
|
|
int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
|
|
int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
|
|
|
|
x = (x | (x << 8)) & 0x00FF00FF;
|
|
x = (x | (x << 4)) & 0x0F0F0F0F;
|
|
x = (x | (x << 2)) & 0x33333333;
|
|
x = (x | (x << 1)) & 0x55555555;
|
|
|
|
y = (y | (y << 8)) & 0x00FF00FF;
|
|
y = (y | (y << 4)) & 0x0F0F0F0F;
|
|
y = (y | (y << 2)) & 0x33333333;
|
|
y = (y | (y << 1)) & 0x55555555;
|
|
|
|
return x | (y << 1);
|
|
}
|
|
|
|
// find the leftmost node of a polygon ring
|
|
template <typename N>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::getLeftmost(Node* start) {
|
|
Node* p = start;
|
|
Node* leftmost = start;
|
|
do {
|
|
if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
|
|
leftmost = p;
|
|
p = p->next;
|
|
} while (p != start);
|
|
|
|
return leftmost;
|
|
}
|
|
|
|
// check if a point lies within a convex triangle
|
|
template <typename N>
|
|
bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
|
|
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
|
|
(ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
|
|
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
|
|
}
|
|
|
|
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
|
template <typename N>
|
|
bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
|
|
return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && // dones't intersect other edges
|
|
((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
|
|
(area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) || // does not create opposite-facing sectors
|
|
(equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0)); // special zero-length case
|
|
}
|
|
|
|
// signed area of a triangle
|
|
template <typename N>
|
|
double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
|
|
return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
|
|
}
|
|
|
|
// check if two points are equal
|
|
template <typename N>
|
|
bool Earcut<N>::equals(const Node* p1, const Node* p2) {
|
|
return p1->x == p2->x && p1->y == p2->y;
|
|
}
|
|
|
|
// check if two segments intersect
|
|
template <typename N>
|
|
bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
|
|
int o1 = sign(area(p1, q1, p2));
|
|
int o2 = sign(area(p1, q1, q2));
|
|
int o3 = sign(area(p2, q2, p1));
|
|
int o4 = sign(area(p2, q2, q1));
|
|
|
|
if (o1 != o2 && o3 != o4) return true; // general case
|
|
|
|
if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
|
|
if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
|
|
if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
|
|
if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
|
|
|
|
return false;
|
|
}
|
|
|
|
// for collinear points p, q, r, check if point q lies on segment pr
|
|
template <typename N>
|
|
bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) {
|
|
return q->x <= std::max<double>(p->x, r->x) &&
|
|
q->x >= std::min<double>(p->x, r->x) &&
|
|
q->y <= std::max<double>(p->y, r->y) &&
|
|
q->y >= std::min<double>(p->y, r->y);
|
|
}
|
|
|
|
template <typename N>
|
|
int Earcut<N>::sign(double val) {
|
|
return (0.0 < val) - (val < 0.0);
|
|
}
|
|
|
|
// check if a polygon diagonal intersects any polygon segments
|
|
template <typename N>
|
|
bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
|
|
const Node* p = a;
|
|
do {
|
|
if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
|
|
intersects(p, p->next, a, b)) return true;
|
|
p = p->next;
|
|
} while (p != a);
|
|
|
|
return false;
|
|
}
|
|
|
|
// check if a polygon diagonal is locally inside the polygon
|
|
template <typename N>
|
|
bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
|
|
return area(a->prev, a, a->next) < 0 ?
|
|
area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
|
|
area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
|
|
}
|
|
|
|
// check if the middle Vertex of a polygon diagonal is inside the polygon
|
|
template <typename N>
|
|
bool Earcut<N>::middleInside(const Node* a, const Node* b) {
|
|
const Node* p = a;
|
|
bool inside = false;
|
|
double px = (a->x + b->x) / 2;
|
|
double py = (a->y + b->y) / 2;
|
|
do {
|
|
if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
|
|
(px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
|
|
inside = !inside;
|
|
p = p->next;
|
|
} while (p != a);
|
|
|
|
return inside;
|
|
}
|
|
|
|
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
|
|
// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
|
|
// single ring
|
|
template <typename N>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::splitPolygon(Node* a, Node* b) {
|
|
Node* a2 = nodes.construct(a->i, a->x, a->y);
|
|
Node* b2 = nodes.construct(b->i, b->x, b->y);
|
|
Node* an = a->next;
|
|
Node* bp = b->prev;
|
|
|
|
a->next = b;
|
|
b->prev = a;
|
|
|
|
a2->next = an;
|
|
an->prev = a2;
|
|
|
|
b2->next = a2;
|
|
a2->prev = b2;
|
|
|
|
bp->next = b2;
|
|
b2->prev = bp;
|
|
|
|
return b2;
|
|
}
|
|
|
|
// create a node and util::optionally link it with previous one (in a circular doubly linked list)
|
|
template <typename N> template <typename Point>
|
|
typename Earcut<N>::Node*
|
|
Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
|
|
Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
|
|
|
|
if (!last) {
|
|
p->prev = p;
|
|
p->next = p;
|
|
|
|
} else {
|
|
assert(last);
|
|
p->next = last->next;
|
|
p->prev = last;
|
|
last->next->prev = p;
|
|
last->next = p;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
template <typename N>
|
|
void Earcut<N>::removeNode(Node* p) {
|
|
p->next->prev = p->prev;
|
|
p->prev->next = p->next;
|
|
|
|
if (p->prevZ) p->prevZ->nextZ = p->nextZ;
|
|
if (p->nextZ) p->nextZ->prevZ = p->prevZ;
|
|
}
|
|
}
|
|
|
|
template <typename N = uint32_t, typename Polygon>
|
|
std::vector<N> earcut(const Polygon& poly) {
|
|
mapbox::detail::Earcut<N> earcut;
|
|
earcut(poly);
|
|
return std::move(earcut.indices);
|
|
}
|
|
}
|