jkxr/Projects/Android/jni/OpenJK/code/Ravl/CMatrix.h
Simon 4597b03873 Initial Commit
Opens in Android Studio but haven't even tried to build it yet (it won't.. I know that much!)
2022-09-18 16:37:21 +01:00

187 lines
6.9 KiB
C++

/*
===========================================================================
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
////////////////////////////////////////////////////////////////////////////////////////
// RAVEN STANDARD TEMPLATE LIBRARY
// (c) 2002 Activision
//
//
// Matrix Library
// --------------
//
//
//
// NOTES:
//
//
////////////////////////////////////////////////////////////////////////////////////////
#if !defined(RAVL_MATRIX_INC)
#define RAVL_MATRIX_INC
////////////////////////////////////////////////////////////////////////////////////////
// Includes
////////////////////////////////////////////////////////////////////////////////////////
#if defined(RA_DEBUG_LINKING)
#pragma message("...including CMatrix.h")
#endif
#if !defined(RAVL_VEC_INC)
#include "CVec.h"
#endif
//namespace ravl
//{
////////////////////////////////////////////////////////////////////////////////////////
// The Matrix
////////////////////////////////////////////////////////////////////////////////////////
class CMatrix
{
public:
////////////////////////////////////////////////////////////////////////////////////
// Constructors
////////////////////////////////////////////////////////////////////////////////////
CMatrix() {}
CMatrix(const CVec4& x,const CVec4& y,const CVec4& z, const CVec4& w) {v[0]=x; v[1]=y; v[2]=z; v[3]=w;}
CMatrix(const CMatrix& t) {v[0]=t.v[0]; v[1]=t.v[1]; v[2]=t.v[2]; v[3]=t.v[3];}
CMatrix(const float t[16]) {v[0]=t[0]; v[1]=t[4]; v[2]=t[8]; v[3]=t[12];}
////////////////////////////////////////////////////////////////////////////////////
// Initializers
////////////////////////////////////////////////////////////////////////////////////
void Set(const CVec4& x,const CVec4& y,const CVec4& z, const CVec4& w) {v[0]=x; v[1]=y; v[2]=z; v[3]=w;}
void Set(const CMatrix& t) {v[0]=t.v[0]; v[1]=t.v[1]; v[2]=t.v[2]; v[3]=t.v[3];}
void Set(const float t[16]) {v[0]=t[0]; v[1]=t[4]; v[2]=t[8]; v[3]=t[12];}
void Clear() {v[0].Set(0,0,0,0); v[1].Set(0,0,0,0); v[2].Set(0,0,0,0); v[3].Set(0,0,0,0);}
void Itentity() {v[0].Set(1,0,0,0); v[1].Set(0,1,0,0); v[2].Set(0,0,1,0); v[3].Set(0,0,0,1);}
void Translate(const float x, const float y, const float z) {v[0].Set(1,0,0,0); v[1].Set(0,1,0,0); v[2].Set(0,0,1,0); v[3].Set(x,y,z,1);}
void Scale(const float x, const float y, const float z) {v[0].Set(x,0,0,0); v[1].Set(0,y,0,0); v[2].Set(0,0,z,0); v[3].Set(0,0,0,1);}
void Rotate(int axis, const float s/*sin(angle)*/, const float c/*cos(angle)*/)
{
switch(axis)
{
case 0:
v[0].Set( 1, 0, 0, 0);
v[1].Set( 0, c,-s, 0);
v[2].Set( 0, s, c, 0);
break;
case 1:
v[0].Set( c, 0, s, 0);
v[1].Set( 0, 1, 0, 0);
v[2].Set(-s, 0, c, 0);
break;
case 2:
v[0].Set( c,-s, 0, 0);
v[1].Set( s, c, 0, 0);
v[2].Set( 0, 0, 1, 0);
break;
}
v[3].Set( 0, 0, 0, 1);
}
////////////////////////////////////////////////////////////////////////////////////
// Member Accessors
////////////////////////////////////////////////////////////////////////////////////
const CVec4& operator[](int i) const {return v[i];}
CVec4& operator[](int i) {return v[i];}
CVec4& up() {return v[0];}
CVec4& left() {return v[1];}
CVec4& fwd() {return v[2];}
CVec4& origin() {return v[3];}
////////////////////////////////////////////////////////////////////////////////////
// Equality / Inequality Operators
////////////////////////////////////////////////////////////////////////////////////
bool operator== (const CMatrix& t) const {return (v[0]==t.v[0] && v[1]==t.v[1] && v[2]==t.v[2] && v[3]==t.v[3]);}
bool operator!= (const CMatrix& t) const {return !(v[0]==t.v[0] && v[1]==t.v[1] && v[2]==t.v[2] && v[3]==t.v[3]);}
////////////////////////////////////////////////////////////////////////////////////
// Basic Arithimitic Operators
////////////////////////////////////////////////////////////////////////////////////
const CMatrix &operator= (const CMatrix& t) {v[0]=t.v[0]; v[1]=t.v[1]; v[2]=t.v[2]; v[3]=t.v[3]; return *this;}
const CMatrix &operator+= (const CMatrix& t) {v[0]+=t.v[0]; v[1]+=t.v[1]; v[2]+=t.v[2]; v[3]+=t.v[3];return *this;}
const CMatrix &operator-= (const CMatrix& t) {v[0]-=t.v[0]; v[1]-=t.v[1]; v[2]-=t.v[2]; v[3]-=t.v[3];return *this;}
CMatrix operator+ (const CMatrix &t) const {return CMatrix(v[0]+t.v[0], v[1]+t.v[1], v[2]+t.v[2], v[3]+t.v[3]);}
CMatrix operator- (const CMatrix &t) const {return CMatrix(v[0]-t.v[0], v[1]-t.v[1], v[2]-t.v[2], v[3]-t.v[3]);}
////////////////////////////////////////////////////////////////////////////////////
// Matrix Scale
////////////////////////////////////////////////////////////////////////////////////
const CMatrix &operator*= (const float d) {v[0]*=d; v[1]*=d; v[2]*=d; v[3]*=d; return *this;}
////////////////////////////////////////////////////////////////////////////////////
// Matrix To Matrix Multiply
////////////////////////////////////////////////////////////////////////////////////
CMatrix operator* (const CMatrix &t) const
{
// assert(this!=&t); // Don't Multiply With Self
CMatrix Result; // The Resulting Matrix
int i,j,k; // Counters
float Accumulator; // Current Value Of The Dot Product
for (i=0; i<4; i++)
{
for (j=0; j<4; j++)
{
Accumulator = 0.0f; // Reset The Accumulator
for(k=0; k<4; k++)
{
Accumulator += v[i][k]*t[k][j]; // Calculate Dot Product Of The Two Vectors
}
Result[i][j]=Accumulator; // Place In Result
}
}
return Result;
}
////////////////////////////////////////////////////////////////////////////////////
// Vector To Matrix Multiply
////////////////////////////////////////////////////////////////////////////////////
CVec4 operator* (const CVec4 &t) const
{
CVec4 Result;
Result[0] = v[0][0]*t[0] + v[1][0]*t[1] + v[2][0]*t[2] + v[3][0];
Result[1] = v[0][1]*t[0] + v[1][1]*t[1] + v[2][1]*t[2] + v[3][1];
Result[2] = v[0][2]*t[0] + v[1][2]*t[1] + v[2][2]*t[2] + v[3][2];
return Result;
}
public:
CVec4 v[4];
};
//}
#endif