jkxr/Projects/Android/jni/JKVR/VrInputCommon.cpp

335 lines
11 KiB
C++
Raw Normal View History

/************************************************************************************
Filename : VrInputRight.c
Content : Handles common controller input functionality
Created : September 2019
Authors : Simon Brown
*************************************************************************************/
#include "VrInput.h"
2022-09-19 21:46:47 +00:00
#include <qcommon/qcommon.h>
#include <qcommon/q_platform.h>
cvar_t *vr_turn_mode;
cvar_t *vr_turn_angle;
cvar_t *vr_positional_factor;
cvar_t *vr_walkdirection;
cvar_t *vr_weapon_pitchadjust;
cvar_t *vr_control_scheme;
cvar_t *vr_virtual_stock;
cvar_t *vr_switch_sticks;
cvar_t *vr_immersive_cinematics;
cvar_t *vr_screen_dist;
cvar_t *vr_weapon_velocity_trigger;
2022-11-07 23:57:10 +00:00
cvar_t *vr_force_velocity_trigger;
cvar_t *vr_force_distance_trigger;
cvar_t *vr_two_handed_weapons;
2022-11-07 23:57:10 +00:00
cvar_t *vr_force_motion_controlled;
cvar_t *vr_crouch_toggle;
cvar_t *vr_irl_crouch_enabled;
cvar_t *vr_irl_crouch_to_stand_ratio;
2022-11-12 17:05:39 +00:00
cvar_t *vr_saber_block_debounce_time;
cvar_t *vr_haptic_intensity;
cvar_t *vr_comfort_vignette;
cvar_t *vr_saber_3rdperson_mode;
2022-11-26 15:38:17 +00:00
cvar_t *vr_gesture_triggered_use;
2022-12-14 14:45:51 +00:00
cvar_t *vr_use_gesture_boundary;
ovrInputStateTrackedRemote leftTrackedRemoteState_old;
ovrInputStateTrackedRemote leftTrackedRemoteState_new;
ovrTrackedController leftRemoteTracking_new;
ovrInputStateTrackedRemote rightTrackedRemoteState_old;
ovrInputStateTrackedRemote rightTrackedRemoteState_new;
ovrTrackedController rightRemoteTracking_new;
float remote_movementSideways;
float remote_movementForward;
float remote_movementUp;
float positional_movementSideways;
float positional_movementForward;
2022-09-29 22:38:22 +00:00
bool openjk_initialised;
long long global_time;
int ducked;
vr_client_info_t vr;
//keys.h
void Sys_QueEvent( int time, sysEventType_t type, int value, int value2, int ptrLength, void *ptr );
void handleTrackedControllerButton(ovrInputStateTrackedRemote * trackedRemoteState, ovrInputStateTrackedRemote * prevTrackedRemoteState, uint32_t button, int key)
{
if ((trackedRemoteState->Buttons & button) != (prevTrackedRemoteState->Buttons & button))
{
Sys_QueEvent( 0, SE_KEY, key, (trackedRemoteState->Buttons & button) != 0, 0, NULL );
// Key_Event(key, (trackedRemoteState->Buttons & button) != 0, global_time);
}
}
void rotateAboutOrigin(float x, float y, float rotation, vec2_t out)
{
out[0] = cosf(DEG2RAD(-rotation)) * x + sinf(DEG2RAD(-rotation)) * y;
out[1] = cosf(DEG2RAD(-rotation)) * y - sinf(DEG2RAD(-rotation)) * x;
}
float length(float x, float y)
{
return sqrtf(powf(x, 2.0f) + powf(y, 2.0f));
}
#define NLF_DEADZONE 0.1
#define NLF_POWER 2.2
float nonLinearFilter(float in)
{
float val = 0.0f;
if (in > NLF_DEADZONE)
{
val = in;
val -= NLF_DEADZONE;
val /= (1.0f - NLF_DEADZONE);
val = powf(val, NLF_POWER);
}
else if (in < -NLF_DEADZONE)
{
val = in;
val += NLF_DEADZONE;
val /= (1.0f - NLF_DEADZONE);
val = -powf(fabsf(val), NLF_POWER);
}
return val;
}
void sendButtonActionSimple(const char* action)
{
char command[256];
snprintf( command, sizeof( command ), "%s\n", action );
Cbuf_AddText( command );
}
2022-09-19 21:46:47 +00:00
bool between(float min, float val, float max)
{
return (min < val) && (val < max);
}
void sendButtonAction(const char* action, long buttonDown)
{
char command[256];
snprintf( command, sizeof( command ), "%s\n", action );
if (!buttonDown)
{
command[0] = '-';
}
Cbuf_AddText( command );
}
void PortableMouseAbs(float x,float y);
float clamp(float _min, float _val, float _max)
{
2022-09-19 21:46:47 +00:00
return fmax(fmin(_val, _max), _min);
}
2022-09-19 21:46:47 +00:00
void interactWithTouchScreen(bool reset, ovrInputStateTrackedRemote *newState, ovrInputStateTrackedRemote *oldState) {
static float centerYaw = 0;
if (reset || Q_isnan(centerYaw) || fabs(sinf(DEG2RAD(vr.weaponangles[YAW]-centerYaw))) > 0.9f)
{
centerYaw = vr.weaponangles[YAW];
}
float cursorX = -sinf(DEG2RAD(vr.weaponangles[YAW]-centerYaw)) + 0.5f;
float cursorY = (float)(vr.weaponangles[PITCH] / 90.0) + 0.5f;
PortableMouseAbs(cursorX, cursorY);
}
/*
================================================================================
ovrMatrix4f
================================================================================
*/
ovrMatrix4f ovrMatrix4f_CreateProjectionFov(
const float angleLeft,
const float angleRight,
const float angleUp,
const float angleDown,
const float nearZ,
const float farZ) {
const float tanAngleLeft = tanf(angleLeft);
const float tanAngleRight = tanf(angleRight);
const float tanAngleDown = tanf(angleDown);
const float tanAngleUp = tanf(angleUp);
const float tanAngleWidth = tanAngleRight - tanAngleLeft;
// Set to tanAngleDown - tanAngleUp for a clip space with positive Y
// down (Vulkan). Set to tanAngleUp - tanAngleDown for a clip space with
// positive Y up (OpenGL / D3D / Metal).
const float tanAngleHeight = tanAngleUp - tanAngleDown;
// Set to nearZ for a [-1,1] Z clip space (OpenGL / OpenGL ES).
// Set to zero for a [0,1] Z clip space (Vulkan / D3D / Metal).
const float offsetZ = nearZ;
ovrMatrix4f result;
if (farZ <= nearZ) {
// place the far plane at infinity
result.M[0][0] = 2 / tanAngleWidth;
result.M[0][1] = 0;
result.M[0][2] = (tanAngleRight + tanAngleLeft) / tanAngleWidth;
result.M[0][3] = 0;
result.M[1][0] = 0;
result.M[1][1] = 2 / tanAngleHeight;
result.M[1][2] = (tanAngleUp + tanAngleDown) / tanAngleHeight;
result.M[1][3] = 0;
result.M[2][0] = 0;
result.M[2][1] = 0;
result.M[2][2] = -1;
result.M[2][3] = -(nearZ + offsetZ);
result.M[3][0] = 0;
result.M[3][1] = 0;
result.M[3][2] = -1;
result.M[3][3] = 0;
} else {
// normal projection
result.M[0][0] = 2 / tanAngleWidth;
result.M[0][1] = 0;
result.M[0][2] = (tanAngleRight + tanAngleLeft) / tanAngleWidth;
result.M[0][3] = 0;
result.M[1][0] = 0;
result.M[1][1] = 2 / tanAngleHeight;
result.M[1][2] = (tanAngleUp + tanAngleDown) / tanAngleHeight;
result.M[1][3] = 0;
result.M[2][0] = 0;
result.M[2][1] = 0;
result.M[2][2] = -(farZ + offsetZ) / (farZ - nearZ);
result.M[2][3] = -(farZ * (nearZ + offsetZ)) / (farZ - nearZ);
result.M[3][0] = 0;
result.M[3][1] = 0;
result.M[3][2] = -1;
result.M[3][3] = 0;
}
return result;
}
ovrMatrix4f ovrMatrix4f_CreateFromQuaternion(const XrQuaternionf* q) {
const float ww = q->w * q->w;
const float xx = q->x * q->x;
const float yy = q->y * q->y;
const float zz = q->z * q->z;
ovrMatrix4f out;
out.M[0][0] = ww + xx - yy - zz;
out.M[0][1] = 2 * (q->x * q->y - q->w * q->z);
out.M[0][2] = 2 * (q->x * q->z + q->w * q->y);
out.M[0][3] = 0;
out.M[1][0] = 2 * (q->x * q->y + q->w * q->z);
out.M[1][1] = ww - xx + yy - zz;
out.M[1][2] = 2 * (q->y * q->z - q->w * q->x);
out.M[1][3] = 0;
out.M[2][0] = 2 * (q->x * q->z - q->w * q->y);
out.M[2][1] = 2 * (q->y * q->z + q->w * q->x);
out.M[2][2] = ww - xx - yy + zz;
out.M[2][3] = 0;
out.M[3][0] = 0;
out.M[3][1] = 0;
out.M[3][2] = 0;
out.M[3][3] = 1;
return out;
}
/// Use left-multiplication to accumulate transformations.
ovrMatrix4f ovrMatrix4f_Multiply(const ovrMatrix4f* a, const ovrMatrix4f* b) {
ovrMatrix4f out;
out.M[0][0] = a->M[0][0] * b->M[0][0] + a->M[0][1] * b->M[1][0] + a->M[0][2] * b->M[2][0] +
a->M[0][3] * b->M[3][0];
out.M[1][0] = a->M[1][0] * b->M[0][0] + a->M[1][1] * b->M[1][0] + a->M[1][2] * b->M[2][0] +
a->M[1][3] * b->M[3][0];
out.M[2][0] = a->M[2][0] * b->M[0][0] + a->M[2][1] * b->M[1][0] + a->M[2][2] * b->M[2][0] +
a->M[2][3] * b->M[3][0];
out.M[3][0] = a->M[3][0] * b->M[0][0] + a->M[3][1] * b->M[1][0] + a->M[3][2] * b->M[2][0] +
a->M[3][3] * b->M[3][0];
out.M[0][1] = a->M[0][0] * b->M[0][1] + a->M[0][1] * b->M[1][1] + a->M[0][2] * b->M[2][1] +
a->M[0][3] * b->M[3][1];
out.M[1][1] = a->M[1][0] * b->M[0][1] + a->M[1][1] * b->M[1][1] + a->M[1][2] * b->M[2][1] +
a->M[1][3] * b->M[3][1];
out.M[2][1] = a->M[2][0] * b->M[0][1] + a->M[2][1] * b->M[1][1] + a->M[2][2] * b->M[2][1] +
a->M[2][3] * b->M[3][1];
out.M[3][1] = a->M[3][0] * b->M[0][1] + a->M[3][1] * b->M[1][1] + a->M[3][2] * b->M[2][1] +
a->M[3][3] * b->M[3][1];
out.M[0][2] = a->M[0][0] * b->M[0][2] + a->M[0][1] * b->M[1][2] + a->M[0][2] * b->M[2][2] +
a->M[0][3] * b->M[3][2];
out.M[1][2] = a->M[1][0] * b->M[0][2] + a->M[1][1] * b->M[1][2] + a->M[1][2] * b->M[2][2] +
a->M[1][3] * b->M[3][2];
out.M[2][2] = a->M[2][0] * b->M[0][2] + a->M[2][1] * b->M[1][2] + a->M[2][2] * b->M[2][2] +
a->M[2][3] * b->M[3][2];
out.M[3][2] = a->M[3][0] * b->M[0][2] + a->M[3][1] * b->M[1][2] + a->M[3][2] * b->M[2][2] +
a->M[3][3] * b->M[3][2];
out.M[0][3] = a->M[0][0] * b->M[0][3] + a->M[0][1] * b->M[1][3] + a->M[0][2] * b->M[2][3] +
a->M[0][3] * b->M[3][3];
out.M[1][3] = a->M[1][0] * b->M[0][3] + a->M[1][1] * b->M[1][3] + a->M[1][2] * b->M[2][3] +
a->M[1][3] * b->M[3][3];
out.M[2][3] = a->M[2][0] * b->M[0][3] + a->M[2][1] * b->M[1][3] + a->M[2][2] * b->M[2][3] +
a->M[2][3] * b->M[3][3];
out.M[3][3] = a->M[3][0] * b->M[0][3] + a->M[3][1] * b->M[1][3] + a->M[3][2] * b->M[2][3] +
a->M[3][3] * b->M[3][3];
return out;
}
ovrMatrix4f ovrMatrix4f_CreateRotation(const float radiansX, const float radiansY, const float radiansZ) {
const float sinX = sinf(radiansX);
const float cosX = cosf(radiansX);
const ovrMatrix4f rotationX = {
{{1, 0, 0, 0}, {0, cosX, -sinX, 0}, {0, sinX, cosX, 0}, {0, 0, 0, 1}}};
const float sinY = sinf(radiansY);
const float cosY = cosf(radiansY);
const ovrMatrix4f rotationY = {
{{cosY, 0, sinY, 0}, {0, 1, 0, 0}, {-sinY, 0, cosY, 0}, {0, 0, 0, 1}}};
const float sinZ = sinf(radiansZ);
const float cosZ = cosf(radiansZ);
const ovrMatrix4f rotationZ = {
{{cosZ, -sinZ, 0, 0}, {sinZ, cosZ, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}};
const ovrMatrix4f rotationXY = ovrMatrix4f_Multiply(&rotationY, &rotationX);
return ovrMatrix4f_Multiply(&rotationZ, &rotationXY);
}
XrVector4f XrVector4f_MultiplyMatrix4f(const ovrMatrix4f* a, const XrVector4f* v) {
XrVector4f out;
out.x = a->M[0][0] * v->x + a->M[0][1] * v->y + a->M[0][2] * v->z + a->M[0][3] * v->w;
out.y = a->M[1][0] * v->x + a->M[1][1] * v->y + a->M[1][2] * v->z + a->M[1][3] * v->w;
out.z = a->M[2][0] * v->x + a->M[2][1] * v->y + a->M[2][2] * v->z + a->M[2][3] * v->w;
out.w = a->M[3][0] * v->x + a->M[3][1] * v->y + a->M[3][2] * v->z + a->M[3][3] * v->w;
return out;
}
/*
================================================================================
ovrTrackedController
================================================================================
*/
void ovrTrackedController_Clear(ovrTrackedController* controller) {
controller->Active = false;
controller->Pose = XrPosef_Identity();
}