quakeforge/libs/video/renderer/r_light.c
Bill Currie 7402fcfd0c [renderer] move r_worldentity and r_viewleaf into refdef
More cleanup of globals that seem to be quake specific.
2022-03-14 15:27:43 +09:00

563 lines
13 KiB
C

/*
r_light.c
common lightmap code.
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <math.h>
#include <stdio.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/render.h"
#include "compat.h"
#include "r_internal.h"
dlight_t *r_dlights;
vec3_t ambientcolor;
unsigned int r_maxdlights;
void
R_FindNearLights (const vec3_t pos, int count, dlight_t **lights)
{
float *scores = alloca (count * sizeof (float));
float score;
dlight_t *dl;
unsigned i;
int num = 0, j;
vec3_t d;
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->die < r_data->realtime || !dl->radius)
continue;
VectorSubtract (dl->origin, pos, d);
score = DotProduct (d, d) / dl->radius;
if (!num) {
scores[0] = score;
lights[0] = dl;
num = 1;
} else if (score <= scores[0]) {
memmove (&lights[1], &lights[0],
(count - 1) * sizeof (dlight_t *));
memmove (&scores[1], &scores[0], (count - 1) * sizeof (float));
scores[0] = score;
lights[0] = dl;
if (num < count)
num++;
} else if (score > scores[num - 1]) {
if (num < count) {
scores[num] = score;
lights[num] = dl;
num++;
}
} else {
for (j = num - 1; j > 0; j--) {
if (score > scores[j - 1]) {
memmove (&lights[j + 1], &lights[j],
(count - j) * sizeof (dlight_t *));
memmove (&scores[j + 1], &scores[j],
(count - j) * sizeof (float));
scores[j] = score;
lights[j] = dl;
if (num < count)
num++;
break;
}
}
}
}
for (j = num; j < count; j++)
lights[j] = 0;
}
void
R_MaxDlightsCheck (cvar_t *var)
{
r_maxdlights = bound (0, var->int_val, MAX_DLIGHTS);
if (r_dlights)
free (r_dlights);
r_dlights=0;
if (r_maxdlights)
r_dlights = (dlight_t *) calloc (r_maxdlights, sizeof (dlight_t));
R_ClearDlights();
}
void
R_AnimateLight (void)
{
int i, j, k;
// light animations
// 'm' is normal light, 'a' is no light, 'z' is double bright
i = (int) (r_data->realtime * 10);
for (j = 0; j < MAX_LIGHTSTYLES; j++) {
if (!r_data->lightstyle[j].length) {
d_lightstylevalue[j] = 256;
continue;
}
if (r_flatlightstyles->int_val == 2) {
k = r_data->lightstyle[j].peak - 'a';
} else if (r_flatlightstyles->int_val == 1) {
k = r_data->lightstyle[j].average - 'a';
} else {
k = i % r_data->lightstyle[j].length;
k = r_data->lightstyle[j].map[k] - 'a';
}
d_lightstylevalue[j] = k * 22;
}
}
static inline void
real_mark_surfaces (float dist, msurface_t *surf, const vec3_t lightorigin,
dlight_t *light, unsigned lightnum)
{
float dist2, is, it;
float maxdist = light->radius * light->radius;
vec3_t impact;
unsigned ind, bit;
dist2 = maxdist - dist * dist;
VectorMultSub (light->origin, dist, surf->plane->normal, impact);
is = DotProduct (impact, surf->texinfo->vecs[0])
+ surf->texinfo->vecs[0][3] - surf->texturemins[0];
it = DotProduct (impact, surf->texinfo->vecs[1])
+ surf->texinfo->vecs[1][3] - surf->texturemins[1];
// compress the square to a point
if (is > surf->extents[0])
is -= surf->extents[0];
else if (is > 0)
is = 0;
if (it > surf->extents[1])
it -= surf->extents[1];
else if (it > 0)
it = 0;
if (is * is + it * it > dist2)
return;
if (surf->dlightframe != r_framecount) {
memset (surf->dlightbits, 0, sizeof (surf->dlightbits));
surf->dlightframe = r_framecount;
}
ind = lightnum / 32;
bit = 1 << (lightnum % 32);
surf->dlightbits[ind] |= bit;
}
static inline void
mark_surfaces (msurface_t *surf, const vec3_t lightorigin, dlight_t *light,
int lightnum)
{
float dist;
dist = PlaneDiff(lightorigin, surf->plane);
if (surf->flags & SURF_PLANEBACK)
dist = -dist;
if ((dist < 0 && !(surf->flags & SURF_LIGHTBOTHSIDES))
|| dist > light->radius)
return;
real_mark_surfaces (dist, surf, lightorigin, light, lightnum);
}
// LordHavoc: heavily modified, to eliminate unnecessary texture uploads,
// and support bmodel lighting better
void
R_RecursiveMarkLights (mod_brush_t *brush, const vec3_t lightorigin,
dlight_t *light, int lightnum, mnode_t *node)
{
unsigned i;
float ndist, maxdist;
plane_t *splitplane;
msurface_t *surf;
maxdist = light->radius;
loc0:
if (node->contents < 0)
return;
splitplane = node->plane;
ndist = DotProduct (lightorigin, splitplane->normal) - splitplane->dist;
if (ndist > maxdist * maxdist) {
// Save time by not pushing another stack frame.
if (node->children[0]->contents >= 0) {
node = node->children[0];
goto loc0;
}
return;
}
if (ndist < -maxdist * maxdist) {
// Save time by not pushing another stack frame.
if (node->children[1]->contents >= 0) {
node = node->children[1];
goto loc0;
}
return;
}
// mark the polygons
surf = brush->surfaces + node->firstsurface;
for (i = 0; i < node->numsurfaces; i++, surf++) {
mark_surfaces (surf, lightorigin, light, lightnum);
}
if (node->children[0]->contents >= 0) {
if (node->children[1]->contents >= 0)
R_RecursiveMarkLights (brush, lightorigin, light, lightnum,
node->children[1]);
node = node->children[0];
goto loc0;
} else if (node->children[1]->contents >= 0) {
node = node->children[1];
goto loc0;
}
}
void
R_MarkLights (const vec3_t lightorigin, dlight_t *light, int lightnum,
model_t *model)
{
mod_brush_t *brush = &model->brush;
mleaf_t *pvsleaf = Mod_PointInLeaf (lightorigin, model);
if (!pvsleaf->compressed_vis) {
mnode_t *node = brush->nodes + brush->hulls[0].firstclipnode;
R_RecursiveMarkLights (brush, lightorigin, light, lightnum, node);
} else {
float radius = light->radius;
vec3_t mins, maxs;
unsigned leafnum = 0;
byte *in = pvsleaf->compressed_vis;
byte vis_bits;
mins[0] = lightorigin[0] - radius;
mins[1] = lightorigin[1] - radius;
mins[2] = lightorigin[2] - radius;
maxs[0] = lightorigin[0] + radius;
maxs[1] = lightorigin[1] + radius;
maxs[2] = lightorigin[2] + radius;
while (leafnum < brush->visleafs) {
int b;
if (!(vis_bits = *in++)) {
leafnum += (*in++) * 8;
continue;
}
for (b = 1; b < 256 && leafnum < brush->visleafs;
b <<= 1, leafnum++) {
int m;
mleaf_t *leaf = &brush->leafs[leafnum + 1];
if (!(vis_bits & b))
continue;
if (leaf->visframe != r_visframecount)
continue;
if (leaf->mins[0] > maxs[0] || leaf->maxs[0] < mins[0]
|| leaf->mins[1] > maxs[1] || leaf->maxs[1] < mins[1]
|| leaf->mins[2] > maxs[2] || leaf->maxs[2] < mins[2])
continue;
if (R_CullBox (leaf->mins, leaf->maxs))
continue;
for (m = 0; m < leaf->nummarksurfaces; m++) {
msurface_t *surf = leaf->firstmarksurface[m];
if (surf->visframe != r_visframecount)
continue;
mark_surfaces (surf, lightorigin, light, lightnum);
}
}
}
}
}
void
R_PushDlights (const vec3_t entorigin)
{
unsigned int i;
dlight_t *l;
vec3_t lightorigin;
if (!r_dlight_lightmap->int_val)
return;
l = r_dlights;
for (i = 0; i < r_maxdlights; i++, l++) {
if (l->die < r_data->realtime || !l->radius)
continue;
VectorSubtract (l->origin, entorigin, lightorigin);
R_MarkLights (lightorigin, l, i, r_refdef.worldmodel);
}
}
/* LIGHT SAMPLING */
plane_t *lightplane;
vec3_t lightspot;
static int
calc_lighting_1 (msurface_t *surf, int ds, int dt)
{
int se_s = ((surf->extents[0] >> 4) + 1);
int se_t = ((surf->extents[0] >> 4) + 1);
int se_size = se_s * se_t;
int r = 0, maps;
byte *lightmap;
unsigned int scale;
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
if (lightmap) {
lightmap += dt * se_s + ds;
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255;
maps++) {
scale = d_lightstylevalue[surf->styles[maps]];
r += *lightmap * scale;
lightmap += se_size;
}
r >>= 8;
}
ambientcolor[2] = ambientcolor[1] = ambientcolor[0] = r;
return r;
}
static int
calc_lighting_3 (msurface_t *surf, int ds, int dt)
{
int se_s = ((surf->extents[0] >> 4) + 1);
int se_t = ((surf->extents[0] >> 4) + 1);
int se_size = se_s * se_t * 3;
int r = 0, maps;
byte *lightmap;
float scale;
ds >>= 4;
dt >>= 4;
VectorZero (ambientcolor);
lightmap = surf->samples;
if (lightmap) {
lightmap += (dt * se_s + ds) * 3;
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255;
maps++) {
scale = d_lightstylevalue[surf->styles[maps]] / 256.0;
VectorMultAdd (ambientcolor, scale, lightmap, ambientcolor);
lightmap += se_size;
}
}
r = (ambientcolor[0] + ambientcolor[1] + ambientcolor[2]) / 3;
return r;
}
static int
RecursiveLightPoint (mod_brush_t *brush, mnode_t *node, const vec3_t start,
const vec3_t end)
{
unsigned i;
int r, s, t, ds, dt, side;
float front, back, frac;
plane_t *plane;
msurface_t *surf;
mtexinfo_t *tex;
vec3_t mid;
loop:
if (node->contents < 0)
return -1; // didn't hit anything
// calculate mid point
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ((back < 0) == side) {
node = node->children[side];
goto loop;
}
frac = front / (front - back);
mid[0] = start[0] + (end[0] - start[0]) * frac;
mid[1] = start[1] + (end[1] - start[1]) * frac;
mid[2] = start[2] + (end[2] - start[2]) * frac;
// go down front side
r = RecursiveLightPoint (brush, node->children[side], start, mid);
if (r >= 0)
return r; // hit something
if ((back < 0) == side)
return -1; // didn't hit anything
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = brush->surfaces + node->firstsurface;
for (i = 0; i < node->numsurfaces; i++, surf++) {
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];
if (s < surf->texturemins[0] || t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if (ds > surf->extents[0] || dt > surf->extents[1])
continue;
if (!surf->samples)
return 0;
if (mod_lightmap_bytes == 1)
return calc_lighting_1 (surf, ds, dt);
else
return calc_lighting_3 (surf, ds, dt);
return r;
}
// go down back side
return RecursiveLightPoint (brush, node->children[!side], mid, end);
}
int
R_LightPoint (mod_brush_t *brush, const vec3_t p)
{
vec3_t end;
int r;
if (!brush->lightdata) {
// allow dlights to have some effect, so don't go /quite/ fullbright
ambientcolor[2] = ambientcolor[1] = ambientcolor[0] = 200;
return 200;
}
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = RecursiveLightPoint (brush, brush->nodes, p, end);
if (r == -1)
r = 0;
return r;
}
dlight_t *
R_AllocDlight (int key)
{
unsigned int i;
dlight_t *dl;
if (!r_maxdlights) {
return NULL;
}
// first look for an exact key match
if (key) {
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->key == key) {
memset (dl, 0, sizeof (*dl));
dl->key = key;
dl->color[0] = dl->color[1] = dl->color[2] = 1;
return dl;
}
}
}
// then look for anything else
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->die < r_data->realtime) {
memset (dl, 0, sizeof (*dl));
dl->key = key;
dl->color[0] = dl->color[1] = dl->color[2] = 1;
return dl;
}
}
dl = &r_dlights[0];
memset (dl, 0, sizeof (*dl));
dl->key = key;
return dl;
}
void
R_DecayLights (double frametime)
{
unsigned int i;
dlight_t *dl;
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->die < r_data->realtime || !dl->radius)
continue;
dl->radius -= frametime * dl->decay;
if (dl->radius < 0)
dl->radius = 0;
}
}
void
R_ClearDlights (void)
{
if (r_maxdlights)
memset (r_dlights, 0, r_maxdlights * sizeof (dlight_t));
}