In testing variable fw/precision in PR_Sprintf, I got a nasty reminder
of the limitations of the current progs ABI: passing @args to another QC
function does not work because the args list gets trampled but the
called function's locals. Thus, the need for a va_copy. It's not quite
the same as C's as it returns the destination args instead of copying
like memcpy, but it does copy the list from the source args to a
temporary buffer that is freed when the calling function returns.
For now it just manages type encodings via their encoding string,
ensuring types are fetched from the target only once, if at all (may
already have the type due to it being common).
When a type is aliased, the alias has two type chains: the simple type
chain with all other aliases stripped, and the full type chain. There
are still plenty of bugs in it, but having the clean type chain takes
care of the major issue that was in the previous attempt as only the
head of the type-chain needs to be skipped for type comparison.
Most of the bugs are in finding the locations where the head needs to be
skipped.
This returns the character (as an int) at the index. Equivalent to
string[index], but qc code doesn't have char-level access and not having
it means that strings can internally change to wchar without too much
fuss (maybe).
libr supplies an __obj_forward definition that links to a builtin, but
as it is the only def in its object file, it is readily replaceable by
an alternative Ruamoko implementation.
The builtin version currently simply errors out (rather facetiously),
but only as a stub to allow progs to load.
Other than its blocking of access to certain files, it really wasn't
that useful compared to the functions in qfs, and pointless with access
to qfs anyway.
This far better reflects the actual meaning. It is very likely that
ty_none is a holdover from long before there was full type encoding and
it meant that the union in qfcc's type_t had no data. This is still
true for basic types, but only if not a function, field or pointer type.
If the type was function, field or pointer, it was not true, so it was
misnamed pretty much from the start.
Only as scalars, I still need to think about what to do for vectors and
quaternions due to param size issues. Also, doubles are not yet
guaranteed to be correctly aligned.
Empty structs are now (correctly) invalid. The hack of using an empty
struct to represent a handle returned from a builtin has been unnecessary
since opaque structs were implemented: now a pointer to an opaque struct
can be used. This is mostly safe as handles are aways negative and thus
attempting to dereference such a pointer should result in a VM error. It
will be even safer once const is implemented and the pointers can be made
constant (eg, typedef struct handle * const handle;)
As class objects don't have retain counts (they're usually static, even!!),
allowing the instance implementations of retain, release, and autorelease
attempt to modify the non-existant retainCount would be a recipe for severe
headaches. We also don't want the retainCount returning "random" values.
Going by "standard" Objective-C, retainCount really doesn't belong in
Object itself. The way GNUStep does it is to stash retainCount in memory
just below the object by allocating extra bytes for the count and returning
a pointer just beyond those extra bytes. Now Ruamoko does the same. This
fixes the inconsistencies in structure layouts for Protocol and class
structs between qfcc generated (internal) structs and user visible structs.
The api hides all the gory details of message buffer setup and usage
(particularly the differences between writing and reading). Most
importantly, the api provides a safe way to read and write binary data
(always little endian).
The special token __INFINITY__, like __FILE__ and friends, will expand to
a floating-point expression containing a value the C compiler considers
infinite. Obviously, this assumes that the system has relatively modern
float hardware -- but if it doesn't, having Ruamoko be able to represent
float infinity is the least of your problems. :)
Use the resource map code for handle management (much safer).
Add support for the enter callback (function or method).
Unfortunately, it still doesn't work due to poor design of the inputline
user data.