Most were pretty easy and fairly logical, but gib's regex was a bit of a
pain until I figured out the real problem was the conditional
assignments.
However, libs/gamecode/test/test-conv4 fails when optimizing due to gcc
using vcvttps2dq (which is nice, actually) for vector forms, but not the
single equivalent other times. I haven't decided what to do with the
test (I might abandon it as it does seem to be UD).
The destination operand must be a full four component vector, but the
source can be smaller and small sources do not need to be aligned: the
offset of the source operand and the swizzle indices are adjusted. The
adjustments are done during final statement emission in order to avoid
confusing the data flow analyser (and that's when def offsets are known).
Having three very similar sets of code for outputting values (just for
debug purposes even) got to be a tad annoying. Now there's only one, and
in the right place, too (with the other value code).
I'd created new_value_expr some time ago, but never used it...
Also, replace convert_* with cast_expr to the appropriate type (removes
a pile of value check and create code).
Use with quaternions and vectors is a little broken in that
vec4/quaternion and vec3/vector are not the same types (by design) and
thus a cast is needed (not what I want, though). However, creating
vectors (that happen to be int due to int constants) does seem to be
working nicely otherwise.
Nicely, I was able to reuse the generated conversion code used by the
progs engine to do the work in qfcc, just needed appropriate definitions
for the operand macros, and to set up the conversion code. Helped
greatly by the new value load/store functions.
pr_type_t now contains only the one "value" field, and all the access
macros now use their PACKED variant for base access, making access to
larger types more consistent with the smaller types.
In working with vectors and matrices while testing the scene wrappers, I
found that there was a fair bit of confusion about how large something
could be. Return values can be up to 32 words (but qfcc wasn't aware of
that), parameters were limited to 4 words still (and possibly should be
for varargs), and temp defs were limited to 8 words (1 lvec4). Temps are
used for handling return values (at least when not optimizing) and thus
must be capable of holding a return value, and passing large arguments
through *formal* parameters should be allowed. It seems reasonable to
limit parameter sizes to return value sizes.
A temp and a move are still used for large return values (4x4 matrix),
but that's an optimization issue: the code itself is at least correct.
Currently only via pragma (not command line options), but I needed to
test the concept. Converting legacy code is just too error prone.
Telling the compiler how to treat the operator makes more sense. When *
acts as @dot with Ruamoko progs, the result is automatically aliased as
a float as this is the legacy meaning (ie, float result for dot
product).
This is achieved by marking a void function with the void_return
attribute and then calling that function in an @return expression.
@return can be used only inside a void function and only with void
functions marked with the void_return attribute. As this is intended for
Objective-QC message forwarding, it is deliberately "difficult" to use
as returning a larger than expected value is unlikely to end well for
the calling function.
However, as a convenience, "@return nil" is allowed (in a void
function). It always returns an integer (which, of course,can be
interpreted as a pointer). This is safe because if the return value is
ignored, it will go into the progs return buffer, and if it is not
ignored, it is the smallest value that can be returned.
Having to remember to copy yet another specifier bit was getting
tedious, so use a union of a struct with the bitfields and an unsigned
int to access them in parallel. Makes for a tidier spec_merge, and one
less headache.
The command line option works the same way as
--advanced/traditional/extended, as does the pragma. As well, raumoko
(alternative spelling) can be used because both are legitimate and some
people may prefer one spelling over the other.
As always, use of the pragma is at one's own risk: its intended use is
forcing the target in the unit tests.
dvec4, lvec4 and ulvec4 need to be aligned to 8 words (32 bytes) in
order to avoid hardware exceptions. Rather than dealing with possibly
mixed alignment when a function has 8-word aligned locals but only
4-word aligned parameters, simply keep the stack frame 8-word aligned at
all times.
As for sizes, the temp def recycler was written before the Ruamoko ISA
was even a pipe dream and thus never expected temp def sizes over 4. At
least now any future adjustments can be done in one place.
My quick and dirty test program works :)
dvec4 xy = {1d, 2d, 0d, 0.5};
void printf(string fmt, ...) = #0;
int main()
{
dvec4 u = {3, 4, 3.14};
dvec4 v = {3, 4, 0, 1};
dvec4 w = v * xy + u;
printf ("[%g, %g, %g, %g]\n", w[0], w[1], w[2], w[3]);
return 0;
}
They're now properly part of the type system and can be used for
declaring variables, initialized (using {} block initializers), operated
on (=, *, + tested) though much work needs to be done on binary
expressions, and indexed. So far, only ivec2 has been tested.
Ruamoko passes va_list (@args) through the ... parameter (as such), but
IMP uses ... to defeat parameter type and count checking and doesn't
want va_list. While possibly not the best solution, adding a no_va_list
flag to function types and skipping ex_args entirely does take care of
the problem without hard-coding anything specific to IMP.
The system currently just sets some bits in the type specifier (the
attribute list should probably be carried around with the specifier),
but it gets the job done for now, and at least gets things started.
This makes it much easier to check (and more robust to name changes),
allowing for effectively killing the node to which the variable being
addressed is attached. This fixes the incorrect address being used for
va_list, which is what caused double-alias to fail.
Since Ruamoko progs must use lea to get the address of a local variable,
add use/def/kill references to the move instruction in order to inform
flow analysis of the variable since it is otherwise lost via the
resulting pointer (not an issue when direct var reference move can be
used).
The test and digging for the def can probably do with being more
aggressive, but this did nicely as a proof of concept.
This is necessary to get statement disassembly working, and likely
debugging in general. locals is the total size of the stack frame and
thus reaches above the function-entry stack pointer, and params_start is
the local space relative start of the parameters. Thus, knowing the
function-entry stack pointer, the bottom of the locals space can be
found by subtracting params_start, and the top of the locals space by
adding (locals - params_start).
This gets all the sections of the progs file nicely aligned and the code
easier to read with the offset and size calculations not being spread
through the function. ivar-struct-return now works when compiled for
Ruamoko.
The goal was to get lea being used for locals in ruamoko progs because
lea takes the base registers into account while the constant pointer
defs used by v6p cannot. Pointer defs are still used for gobals as they
may be out of reach of 16-bit addressing.
address_expr() has been simplified in that it no longer takes an offset:
the vast majority of the callers never passed one, and the few that did
have been reworked to use other mechanisms. In particular,
offset_pointer_expr does the manipulations needed to add an offset
(unscaled by type size) to a pointer. High-level pointer offsets still
apply a scale, though.
Alias expressions now do a better job of hanling aliasing of aliases by
simply replacing the target type when possible.
The parameter defs are allocated from the parameter space using a
minimum alignment of 4, and varargs functions get a va_list struct in
place of the ...
An "args" expression is unconditionally injected into the call arguments
list at the place where ... is in the list, with arguments passed
through ... coming after the ...
Arguments get through to functions now, but there's problems with taking
the address of local variables: currently done using constant pointer
defs, which can't work for the base register addressing used in Ruamoko
progs.
With the update to test-bi's printf (and a hack to qfcc for lea),
triangle.r actually works, printing the expected results (but -1 instead
of 1 for equality, though that too is actually expected). qfcc will take
a bit longer because it seems there are some design issues in address
expressions (ambiguity, and a few other things) that have pretty much
always been there.
While all base registers can be used for any purpose at any time (this
is why the with instruction has hard-absolute modes: you can never get
permanently lost), qfcc currently uses the convention of register 0 for
globals and register 1 for stack locals (params, locals, function args).
The register used to access a def is stored in the def and that is used
to set the register bits in the instruction opcode.
The def code actually doesn't know anything about any conventions: it
assumes all defs are global for non-temp defs (the function code updates
the defs before emitting code) and the current function provides the
register to use for any temp defs allocated while emitting code.
Seems to work well, but debug is utterly messed up (not surprised, that
will be tricky).
Still need to get the base register index into the instructions, but I
think this is it for basic code generation. I should be able to start
testing Ruamoko properly fairly soon :)
Thanks to the use/def/kill lists attached to statements for pseudo-ops,
it turned out to be a lot easier to implement flow analysis (and thus
dags processing) than I expected. I suspect I should go back and make
the old call code use them too, and probably several other places, as
that will greatly simplify the edge setting.
The means that the actual call expression is not in the statement lint
of the enclosing block expression, but just its result, whether the call
is void or not. This actually simplifies several things, but most
importantly will make Ruamoko calls easier to implement.
The test is because I had some trouble with double-calls, and is how I
found the return-postop issue :P
Since Ruamoko now uses the stack for parameters and locals, parameters
need to come after locals in the address space (instead of before, as in
v6 progs). Thus use separate spaces for parameters and locals regardless
of the target, then stitch them together appropriately for the target.
The third space is used for allocating stack space for arguments to
called functions. It us not used for v6 progs, and comes before locals
in Ruamoko progs.
Other than the return value, and optimization (ice, not implemented)
calls in Ruamoko look like they'll work.
This seems to be the most reasonable approach to allocating space for
function call parameters without using push and pop (or adding to the
stack pointer), though it's probably good even when using push and pop
to help keep things aligned.
Operand width is encoded in the instruction opcode, so the width needs
to be accounted for in order to select the correct instruction. With
this, my little test generates correct code for the ruamoko ISA (except
for return, still fails).
long is ignored for double, and v6p progs are stuck with 32 bits for
longs (don't feel like extending v6p any further), but the basics are
there for Ruamoko.
short is ignored for ints because the minimum size is 32, and signed is
just noise for ints anyway (and no chars, so...).
unsigned, however, is finally implemented properly (or at least seems to
be working correctly: tests pass after getting things compiling again,
and lt.u is used where it should be :)
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
They are both gone, and pr_pointer_t is now pr_ptr_t (pointer may be a
little clearer than ptr, but ptr is consistent with things like intptr,
and keeps the type name short).