Raw 'x y z' style vector constants that look like ints (no fractional
parts) used to initialize vector globals/constants don't get converted
to float vectors, resulting in nans for negative values and denormals
for positive values. This tends to make game physics... interesting.
While the option to make '*' mean dot product for vectors is important,
it breaks vector scaling in ruamoko progs as the resultant vector op
becomes a dot product instead of the indented hadamard product (ie,
component-wise).
It's currently used only by the vulkan renderer, as it's the only
renderer that can make good use of it for alias models, but now vulkan
show shirt/pants colors (finally).
This cuts down on the memory requirements for skins by 25%, and
simplifies the shader a bit more, too. While at it, I made alias skins
nominally compatible with bsp textures: layer 0 is color, 1 is emissive,
and 2 is the color map (emissive was on 3).
As the RGB curves for many of the color rows are not linearly related,
my idea of scaling the brightest color in the row just didn't work.
Using a masked palette lookup works much better as it allows any curves.
Also, because the palette is uploaded as a grid and the coordinates are
calculated on the CPU, the system is extendable beyond 8-bit palettes.
This isn't quite complete as the top and bottom colors are still in
separate layers but their indices and masks can fit in just one, but
this requires reworking the texture setup (for another commit).
For whatever reason, I had added an extra 4 bytes to the fragment
shader's push-constants. It took me a while to figure out why renderdoc
wouldn't stop complaining about me not writing enough data.
It turns out my approach to alias skin coloring just doesn't work for
the quake data due to the color curves not having a linear relationship,
especially the bottom colors.
It works on only one layer and one mip, and assumes the provided texture
data is compatible with the image, but does support sub-image updates
(x, y location as parameters, width and height in the texture data).
The bright end of the color map is actually twice the palette value, but
I didn't understand this when I came up with the shirt/pants color
scheme for vulkan. However, the skin texture can store only 0..1, so the
mapping to 0..2 needs to be done in the shader. It looks like it works
at least better: the gold key at the end of demo1 doesn't look as bleh,
though I do get some weird colors still on ogres etc.
Currently only for gl/glsl/vulkan. However, rather than futzing with
con_width and con_height (and trying to guess good values), con_scale
(currently an integer) gives consistent pixel scaling regardless of
window size.
Well, sort of: it's still really in the renderer, but now calling
R_AddEfrags automatically updates the visibility structure as necessary,
and deleting an entity cleans up the efrags automatically. I wanted this
over twenty years ago.
While an entity with a null registry is null regardless of the id,
setting the id to nullent is useful for other purposes.
Fixes the disappearing brush models in the vulkan renderer (it uses
entity id + 1 for indexing), and prevents similar issues in the future.
The common idiom for self init (below) causes a double-call when
compiling with --advanced, resulting in an incorrect retain count.
if (!(self = [super init])) {
return nil;
}
The support for the new vector types broke compiling code using
--advanced. Thus it's necessary to ensure vector constants are
float-type and vec3 and vec4 are treated as vector and quaternion, which
meant resurrecting the old vector expression code for v6p progs.
Calling CL_NetUpdate while not active (or more importantly, while not
connected) results in a buffer write error (Sys_Error). Active was
chosen because that's how the old sbar code worked, and it seems
reasonable to stick with it rather than requesting pings etc during the
connect process.
This fixes maplist showing only those maps in the user directory.
However, no checking is done for duplicate files due to earlier search
paths overriding later paths.
This involved disabling sigils for hipnotic and rogue (not used),
adjusting the number of items views, and moving the two keys views for
hipnotic. Rogue is not yet using the correct status bar pics.
The functionality of the hipnotic and rogue weapon power-ups is now done
by a various mappings instead of separate functions. In theory, this
should make things more flexible, but most importantly, there's a lot
less code duplication.
Sigils can't be flashed as they don't have any animations provided, and
they're not normally as critical. I don't know why items weren't
flashed, but since the pics are there, might as well use them (and the
flashing keys do look pretty good).
When values are bit masks, they're much easier to read when expressed as
a shift than as a raw decimal number, especially when knowing the index
of the bit is important.
I think this makes the purpose of the functions more clear and makes the
protocol logic less dependent on the meaning of some of the updates.
Most of the update functions are not fully implemented yet.
I had forgotten that the cl structs in nq and qw were different layouts,
which resulted in qw's sbar/hud being quite broken. Rather than messing
with the structs, I decided it would be far better in the long run to
clean up sbar's access to the cl struct and the few other nq/qw specific
globals it used. There are still plenty of bugs to fix, but now almost
everything is in the one place.
The first scoreboard entry not showing was due to it being deleted
immediately because unused fragsort array entries had a valid player
index (0 in this case) and thus the unused view removal code was
removing views it should not.
Nicely, all the data is already sort-of available (ping and pl will be
interesting, and I need to double-check uid), but once I get some issues
with the first entry not working, I'll be able to "merge" sbar and
concentrate on rogue and hipnotic.