mirror of
https://github.com/ioquake/jedi-academy.git
synced 2024-11-10 07:11:44 +00:00
1587 lines
37 KiB
C++
1587 lines
37 KiB
C++
// tr_shade_calc.c
|
|
|
|
// leave this as first line for PCH reasons...
|
|
//
|
|
#include "../server/exe_headers.h"
|
|
|
|
|
|
|
|
#include "tr_local.h"
|
|
#define WAVEVALUE( table, base, amplitude, phase, freq ) ((base) + table[ myftol( ( ( (phase) + backEnd.refdef.floatTime * (freq) ) * FUNCTABLE_SIZE ) ) & FUNCTABLE_MASK ] * (amplitude))
|
|
|
|
static float *TableForFunc( genFunc_t func )
|
|
{
|
|
switch ( func )
|
|
{
|
|
case GF_SIN:
|
|
return tr.sinTable;
|
|
case GF_TRIANGLE:
|
|
return tr.triangleTable;
|
|
case GF_SQUARE:
|
|
return tr.squareTable;
|
|
case GF_SAWTOOTH:
|
|
return tr.sawToothTable;
|
|
case GF_INVERSE_SAWTOOTH:
|
|
return tr.inverseSawToothTable;
|
|
case GF_NONE:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
Com_Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'\n", func, tess.shader->name );
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
** EvalWaveForm
|
|
**
|
|
** Evaluates a given waveForm_t, referencing backEnd.refdef.time directly
|
|
*/
|
|
extern float GetNoiseTime( int t ); //from tr_noise, returns 0 to 2
|
|
static float EvalWaveForm( const waveForm_t *wf )
|
|
{
|
|
float *table;
|
|
|
|
if ( wf->func == GF_NOISE ) {
|
|
return ( wf->base + R_NoiseGet4f( 0, 0, 0, ( backEnd.refdef.floatTime + wf->phase ) * wf->frequency ) * wf->amplitude );
|
|
} else if (wf->func == GF_RAND) {
|
|
if( GetNoiseTime( backEnd.refdef.time + wf->phase ) <= wf->frequency ) {
|
|
return (wf->base + wf->amplitude);
|
|
} else {
|
|
return wf->base;
|
|
}
|
|
}
|
|
table = TableForFunc( wf->func );
|
|
return WAVEVALUE( table, wf->base, wf->amplitude, wf->phase, wf->frequency );
|
|
}
|
|
|
|
static float EvalWaveFormClamped( const waveForm_t *wf )
|
|
{
|
|
float glow = EvalWaveForm( wf );
|
|
|
|
if ( glow < 0 )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
if ( glow > 1 )
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
return glow;
|
|
}
|
|
|
|
/*
|
|
** RB_CalcStretchTexCoords
|
|
*/
|
|
void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st )
|
|
{
|
|
float p;
|
|
texModInfo_t tmi;
|
|
|
|
p = 1.0f / EvalWaveForm( wf );
|
|
|
|
tmi.matrix[0][0] = p;
|
|
tmi.matrix[1][0] = 0;
|
|
tmi.translate[0] = 0.5f - 0.5f * p;
|
|
|
|
tmi.matrix[0][1] = 0;
|
|
tmi.matrix[1][1] = p;
|
|
tmi.translate[1] = 0.5f - 0.5f * p;
|
|
|
|
RB_CalcTransformTexCoords( &tmi, st );
|
|
}
|
|
|
|
/*
|
|
====================================================================
|
|
|
|
DEFORMATIONS
|
|
|
|
====================================================================
|
|
*/
|
|
|
|
/*
|
|
========================
|
|
RB_CalcDeformVertexes
|
|
|
|
========================
|
|
*/
|
|
void RB_CalcDeformVertexes( deformStage_t *ds )
|
|
{
|
|
int i;
|
|
vec3_t offset;
|
|
float scale;
|
|
float *xyz = ( float * ) tess.xyz;
|
|
float *normal = ( float * ) tess.normal;
|
|
float *table;
|
|
|
|
if ( ds->deformationWave.frequency == 0 )
|
|
{
|
|
scale = EvalWaveForm( &ds->deformationWave );
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
|
|
{
|
|
VectorScale( normal, scale, offset );
|
|
|
|
xyz[0] += offset[0];
|
|
xyz[1] += offset[1];
|
|
xyz[2] += offset[2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
table = TableForFunc( ds->deformationWave.func );
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
|
|
{
|
|
float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread;
|
|
|
|
scale = WAVEVALUE( table, ds->deformationWave.base,
|
|
ds->deformationWave.amplitude,
|
|
ds->deformationWave.phase + off,
|
|
ds->deformationWave.frequency );
|
|
|
|
VectorScale( normal, scale, offset );
|
|
|
|
xyz[0] += offset[0];
|
|
xyz[1] += offset[1];
|
|
xyz[2] += offset[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=========================
|
|
RB_CalcDeformNormals
|
|
|
|
Wiggle the normals for wavy environment mapping
|
|
=========================
|
|
*/
|
|
void RB_CalcDeformNormals( deformStage_t *ds ) {
|
|
int i;
|
|
float scale;
|
|
float *xyz = ( float * ) tess.xyz;
|
|
float *normal = ( float * ) tess.normal;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) {
|
|
scale = 0.98f;
|
|
scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
|
|
backEnd.refdef.floatTime * ds->deformationWave.frequency );
|
|
normal[ 0 ] += ds->deformationWave.amplitude * scale;
|
|
|
|
scale = 0.98f;
|
|
scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
|
|
backEnd.refdef.floatTime * ds->deformationWave.frequency );
|
|
normal[ 1 ] += ds->deformationWave.amplitude * scale;
|
|
|
|
scale = 0.98f;
|
|
scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
|
|
backEnd.refdef.floatTime * ds->deformationWave.frequency );
|
|
normal[ 2 ] += ds->deformationWave.amplitude * scale;
|
|
|
|
VectorNormalizeFast( normal );
|
|
}
|
|
}
|
|
|
|
/*
|
|
========================
|
|
RB_CalcBulgeVertexes
|
|
|
|
========================
|
|
*/
|
|
void RB_CalcBulgeVertexes( deformStage_t *ds )
|
|
{
|
|
int i;
|
|
float *xyz = ( float * ) tess.xyz;
|
|
float *normal = ( float * ) tess.normal;
|
|
float scale;
|
|
|
|
if ( ds->bulgeSpeed == 0.0f && ds->bulgeWidth == 0.0f )
|
|
{
|
|
// We don't have a speed and width, so just use height to expand uniformly
|
|
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
|
|
{
|
|
xyz[0] += normal[0] * ds->bulgeHeight;
|
|
xyz[1] += normal[1] * ds->bulgeHeight;
|
|
xyz[2] += normal[2] * ds->bulgeHeight;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// I guess do some extra dumb stuff..the fact that it uses ST seems bad though because skin pages may be set up in certain ways that can cause
|
|
// very noticeable seams on sufaces ( like on the huge ion_cannon ).
|
|
const float *st = ( const float * ) tess.texCoords[0];
|
|
float now;
|
|
int off;
|
|
|
|
now = backEnd.refdef.time * ds->bulgeSpeed * 0.001f;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, xyz += 4, st += 2 * NUM_TEX_COORDS, normal += 4 )
|
|
{
|
|
off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now );
|
|
|
|
scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight;
|
|
|
|
xyz[0] += normal[0] * scale;
|
|
xyz[1] += normal[1] * scale;
|
|
xyz[2] += normal[2] * scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
======================
|
|
RB_CalcMoveVertexes
|
|
|
|
A deformation that can move an entire surface along a wave path
|
|
======================
|
|
*/
|
|
void RB_CalcMoveVertexes( deformStage_t *ds ) {
|
|
int i;
|
|
float *xyz;
|
|
float *table;
|
|
float scale;
|
|
vec3_t offset;
|
|
|
|
table = TableForFunc( ds->deformationWave.func );
|
|
|
|
scale = WAVEVALUE( table, ds->deformationWave.base,
|
|
ds->deformationWave.amplitude,
|
|
ds->deformationWave.phase,
|
|
ds->deformationWave.frequency );
|
|
|
|
VectorScale( ds->moveVector, scale, offset );
|
|
|
|
xyz = ( float * ) tess.xyz;
|
|
for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) {
|
|
VectorAdd( xyz, offset, xyz );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
DeformText
|
|
|
|
Change a polygon into a bunch of text polygons
|
|
=============
|
|
*/
|
|
void DeformText( const char *text ) {
|
|
int i;
|
|
vec3_t origin, width, height;
|
|
int len;
|
|
int ch;
|
|
byte color[4];
|
|
float bottom, top;
|
|
vec3_t mid;
|
|
|
|
height[0] = 0;
|
|
height[1] = 0;
|
|
height[2] = -1;
|
|
CrossProduct( tess.normal[0], height, width );
|
|
|
|
// find the midpoint of the box
|
|
VectorClear( mid );
|
|
bottom = WORLD_SIZE; //999999; // WORLD_SIZE instead of MAX_WORLD_COORD so guaranteed to be...
|
|
top = -WORLD_SIZE; //-999999; // ... outside the legal range.
|
|
for ( i = 0 ; i < 4 ; i++ ) {
|
|
VectorAdd( tess.xyz[i], mid, mid );
|
|
if ( tess.xyz[i][2] < bottom ) {
|
|
bottom = tess.xyz[i][2];
|
|
}
|
|
if ( tess.xyz[i][2] > top ) {
|
|
top = tess.xyz[i][2];
|
|
}
|
|
}
|
|
VectorScale( mid, 0.25f, origin );
|
|
|
|
// determine the individual character size
|
|
height[0] = 0;
|
|
height[1] = 0;
|
|
height[2] = ( top - bottom ) * 0.5f;
|
|
|
|
VectorScale( width, height[2] * -0.75f, width );
|
|
|
|
// determine the starting position
|
|
len = strlen( text );
|
|
VectorMA( origin, (len-1), width, origin );
|
|
|
|
// clear the shader indexes
|
|
tess.numIndexes = 0;
|
|
tess.numVertexes = 0;
|
|
|
|
color[0] = color[1] = color[2] = color[3] = 255;
|
|
|
|
// draw each character
|
|
for ( i = 0 ; i < len ; i++ ) {
|
|
ch = text[i];
|
|
ch &= 255;
|
|
|
|
if ( ch != ' ' ) {
|
|
int row, col;
|
|
float frow, fcol, size;
|
|
|
|
row = ch>>4;
|
|
col = ch&15;
|
|
|
|
frow = row*0.0625f;
|
|
fcol = col*0.0625f;
|
|
size = 0.0625f;
|
|
|
|
RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size );
|
|
}
|
|
VectorMA( origin, -2, width, origin );
|
|
}
|
|
}
|
|
|
|
/*
|
|
==================
|
|
GlobalVectorToLocal
|
|
==================
|
|
*/
|
|
static void GlobalVectorToLocal( const vec3_t in, vec3_t out ) {
|
|
out[0] = DotProduct( in, backEnd.ori.axis[0] );
|
|
out[1] = DotProduct( in, backEnd.ori.axis[1] );
|
|
out[2] = DotProduct( in, backEnd.ori.axis[2] );
|
|
}
|
|
|
|
/*
|
|
=====================
|
|
AutospriteDeform
|
|
|
|
Assuming all the triangles for this shader are independant
|
|
quads, rebuild them as forward facing sprites
|
|
=====================
|
|
*/
|
|
static void AutospriteDeform( void ) {
|
|
int i;
|
|
int oldVerts;
|
|
float *xyz;
|
|
vec3_t mid, delta;
|
|
float radius;
|
|
vec3_t left, up;
|
|
vec3_t leftDir, upDir;
|
|
|
|
if ( tess.numVertexes & 3 ) {
|
|
Com_Error( ERR_DROP, "Autosprite shader %s had odd vertex count", tess.shader->name );
|
|
}
|
|
if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
|
|
Com_Error( ERR_DROP, "Autosprite shader %s had odd index count", tess.shader->name );
|
|
}
|
|
|
|
oldVerts = tess.numVertexes;
|
|
tess.numVertexes = 0;
|
|
tess.numIndexes = 0;
|
|
|
|
if ( backEnd.currentEntity != &tr.worldEntity ) {
|
|
GlobalVectorToLocal( backEnd.viewParms.ori.axis[1], leftDir );
|
|
GlobalVectorToLocal( backEnd.viewParms.ori.axis[2], upDir );
|
|
} else {
|
|
VectorCopy( backEnd.viewParms.ori.axis[1], leftDir );
|
|
VectorCopy( backEnd.viewParms.ori.axis[2], upDir );
|
|
}
|
|
|
|
for ( i = 0 ; i < oldVerts ; i+=4 ) {
|
|
// find the midpoint
|
|
xyz = tess.xyz[i];
|
|
|
|
mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]);
|
|
mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]);
|
|
mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]);
|
|
|
|
VectorSubtract( xyz, mid, delta );
|
|
radius = VectorLength( delta ) * 0.707f; // / sqrt(2)
|
|
|
|
VectorScale( leftDir, radius, left );
|
|
VectorScale( upDir, radius, up );
|
|
|
|
if ( backEnd.viewParms.isMirror ) {
|
|
VectorSubtract( vec3_origin, left, left );
|
|
}
|
|
|
|
RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=====================
|
|
Autosprite2Deform
|
|
|
|
Autosprite2 will pivot a rectangular quad along the center of its long axis
|
|
=====================
|
|
*/
|
|
static const glIndex_t edgeVerts[6][2] = {
|
|
{ 0, 1 },
|
|
{ 0, 2 },
|
|
{ 0, 3 },
|
|
{ 1, 2 },
|
|
{ 1, 3 },
|
|
{ 2, 3 }
|
|
};
|
|
|
|
static void Autosprite2Deform( void ) {
|
|
int i, j, k;
|
|
int indexes;
|
|
float *xyz;
|
|
vec3_t forward;
|
|
|
|
if ( tess.numVertexes & 3 ) {
|
|
VID_Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count", tess.shader->name );
|
|
}
|
|
if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
|
|
VID_Printf( PRINT_WARNING, "Autosprite shader %s had odd index count", tess.shader->name );
|
|
}
|
|
|
|
if ( backEnd.currentEntity != &tr.worldEntity ) {
|
|
GlobalVectorToLocal( backEnd.viewParms.ori.axis[0], forward );
|
|
} else {
|
|
VectorCopy( backEnd.viewParms.ori.axis[0], forward );
|
|
}
|
|
|
|
// this is a lot of work for two triangles...
|
|
// we could precalculate a lot of it is an issue, but it would mess up
|
|
// the shader abstraction
|
|
for ( i = 0, indexes = 0 ; i < tess.numVertexes ; i+=4, indexes+=6 ) {
|
|
float lengths[2];
|
|
int nums[2];
|
|
vec3_t mid[2];
|
|
vec3_t major, minor;
|
|
float *v1, *v2;
|
|
|
|
// find the midpoint
|
|
xyz = tess.xyz[i];
|
|
|
|
// identify the two shortest edges
|
|
nums[0] = nums[1] = 0;
|
|
lengths[0] = lengths[1] = WORLD_SIZE;//999999; // ... instead of MAX_WORLD_COORD, so guaranteed to be outside legal range
|
|
|
|
for ( j = 0 ; j < 6 ; j++ ) {
|
|
float l;
|
|
vec3_t temp;
|
|
|
|
v1 = xyz + 4 * edgeVerts[j][0];
|
|
v2 = xyz + 4 * edgeVerts[j][1];
|
|
|
|
VectorSubtract( v1, v2, temp );
|
|
|
|
l = DotProduct( temp, temp );
|
|
if ( l < lengths[0] ) {
|
|
nums[1] = nums[0];
|
|
lengths[1] = lengths[0];
|
|
nums[0] = j;
|
|
lengths[0] = l;
|
|
} else if ( l < lengths[1] ) {
|
|
nums[1] = j;
|
|
lengths[1] = l;
|
|
}
|
|
}
|
|
|
|
for ( j = 0 ; j < 2 ; j++ ) {
|
|
v1 = xyz + 4 * edgeVerts[nums[j]][0];
|
|
v2 = xyz + 4 * edgeVerts[nums[j]][1];
|
|
|
|
mid[j][0] = 0.5f * (v1[0] + v2[0]);
|
|
mid[j][1] = 0.5f * (v1[1] + v2[1]);
|
|
mid[j][2] = 0.5f * (v1[2] + v2[2]);
|
|
}
|
|
|
|
// find the vector of the major axis
|
|
VectorSubtract( mid[1], mid[0], major );
|
|
|
|
// cross this with the view direction to get minor axis
|
|
CrossProduct( major, forward, minor );
|
|
VectorNormalize( minor );
|
|
|
|
// re-project the points
|
|
for ( j = 0 ; j < 2 ; j++ ) {
|
|
float l;
|
|
|
|
v1 = xyz + 4 * edgeVerts[nums[j]][0];
|
|
v2 = xyz + 4 * edgeVerts[nums[j]][1];
|
|
|
|
l = 0.5 * sqrt( lengths[j] );
|
|
|
|
// we need to see which direction this edge
|
|
// is used to determine direction of projection
|
|
for ( k = 0 ; k < 5 ; k++ ) {
|
|
if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0]
|
|
&& tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( k == 5 ) {
|
|
VectorMA( mid[j], l, minor, v1 );
|
|
VectorMA( mid[j], -l, minor, v2 );
|
|
} else {
|
|
VectorMA( mid[j], -l, minor, v1 );
|
|
VectorMA( mid[j], l, minor, v2 );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=====================
|
|
RB_DeformTessGeometry
|
|
|
|
=====================
|
|
*/
|
|
#pragma warning( disable : 4710 ) //vectorLength not inlined in AutospriteDeform which is auto-inlined in here
|
|
void RB_DeformTessGeometry( void ) {
|
|
int i;
|
|
deformStage_t *ds;
|
|
|
|
for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) {
|
|
ds = tess.shader->deforms[ i ];
|
|
|
|
switch ( ds->deformation ) {
|
|
case DEFORM_NONE:
|
|
break;
|
|
case DEFORM_NORMALS:
|
|
RB_CalcDeformNormals( ds );
|
|
break;
|
|
case DEFORM_WAVE:
|
|
RB_CalcDeformVertexes( ds );
|
|
break;
|
|
case DEFORM_BULGE:
|
|
RB_CalcBulgeVertexes( ds );
|
|
break;
|
|
case DEFORM_MOVE:
|
|
RB_CalcMoveVertexes( ds );
|
|
break;
|
|
case DEFORM_PROJECTION_SHADOW:
|
|
RB_ProjectionShadowDeform();
|
|
break;
|
|
case DEFORM_AUTOSPRITE:
|
|
AutospriteDeform();
|
|
break;
|
|
case DEFORM_AUTOSPRITE2:
|
|
Autosprite2Deform();
|
|
break;
|
|
case DEFORM_TEXT0:
|
|
case DEFORM_TEXT1:
|
|
case DEFORM_TEXT2:
|
|
case DEFORM_TEXT3:
|
|
case DEFORM_TEXT4:
|
|
case DEFORM_TEXT5:
|
|
case DEFORM_TEXT6:
|
|
case DEFORM_TEXT7:
|
|
// DeformText( backEnd.refdef.text[ds->deformation - DEFORM_TEXT0] );
|
|
DeformText( "Raven Software" );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#pragma warning( default: 4710 )
|
|
|
|
|
|
/*
|
|
====================================================================
|
|
|
|
COLORS
|
|
|
|
====================================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
** RB_CalcColorFromEntity
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcColorFromEntity( DWORD *dstColors )
|
|
{
|
|
int i;
|
|
DWORD *pColors = dstColors;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
|
|
{
|
|
*pColors = D3DCOLOR_RGBA((int)(backEnd.currentEntity->e.shaderRGBA[0]),
|
|
(int)(backEnd.currentEntity->e.shaderRGBA[1]),
|
|
(int)(backEnd.currentEntity->e.shaderRGBA[2]),
|
|
(int)(backEnd.currentEntity->e.shaderRGBA[3]));
|
|
}
|
|
}
|
|
#else
|
|
void RB_CalcColorFromEntity( unsigned char *dstColors )
|
|
{
|
|
int i;
|
|
int *pColors = ( int * ) dstColors;
|
|
int c;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
|
|
{
|
|
*pColors = c;
|
|
}
|
|
}
|
|
#endif // _XBOX
|
|
|
|
/*
|
|
** RB_CalcColorFromOneMinusEntity
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcColorFromOneMinusEntity( DWORD *dstColors )
|
|
{
|
|
int i;
|
|
DWORD *pColors = dstColors;
|
|
unsigned char invModulate[3];
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
|
|
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
|
|
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
|
|
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
|
|
{
|
|
*pColors = D3DCOLOR_RGBA((int)invModulate[0],
|
|
(int)invModulate[1],
|
|
(int)invModulate[2],
|
|
(int)invModulate[3]);
|
|
}
|
|
}
|
|
#else
|
|
void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors )
|
|
{
|
|
int i;
|
|
int *pColors = ( int * ) dstColors;
|
|
unsigned char invModulate[4];
|
|
int c;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
|
|
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
|
|
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
|
|
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
|
|
|
|
c = * ( int * ) invModulate;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, pColors++ )
|
|
{
|
|
*pColors = * ( int * ) invModulate;
|
|
}
|
|
}
|
|
#endif // _XBOX
|
|
|
|
/*
|
|
** RB_CalcAlphaFromEntity
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcAlphaFromEntity( DWORD *dstColors )
|
|
{
|
|
int i;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, dstColors ++ )
|
|
{
|
|
DWORD rgb = (DWORD)((*dstColors) & 0x00ffffff);
|
|
*dstColors = rgb | ((backEnd.currentEntity->e.shaderRGBA[3] & 0xff) << 24);
|
|
}
|
|
}
|
|
#else
|
|
void RB_CalcAlphaFromEntity( unsigned char *dstColors )
|
|
{
|
|
int i;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
dstColors += 3;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
|
|
{
|
|
*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** RB_CalcAlphaFromOneMinusEntity
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcAlphaFromOneMinusEntity( DWORD *dstColors )
|
|
{
|
|
int i;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, dstColors ++ )
|
|
{
|
|
DWORD rgb = (DWORD)((*dstColors) & 0x00ffffff);
|
|
*dstColors = rgb | (((255 - backEnd.currentEntity->e.shaderRGBA[3]) & 0xff) << 24);
|
|
}
|
|
}
|
|
#else
|
|
void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors )
|
|
{
|
|
int i;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
dstColors += 3;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
|
|
{
|
|
*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** RB_CalcWaveColor
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcWaveColor( const waveForm_t *wf, DWORD *dstColors )
|
|
{
|
|
int i;
|
|
int v;
|
|
float glow;
|
|
DWORD *colors = dstColors;
|
|
byte color[4];
|
|
|
|
if ( wf->func == GF_NOISE ) {
|
|
glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( backEnd.refdef.floatTime + wf->phase ) * wf->frequency ) * wf->amplitude;
|
|
} else {
|
|
glow = EvalWaveForm( wf ) * tr.identityLight;
|
|
}
|
|
|
|
if ( glow < 0 ) {
|
|
glow = 0;
|
|
}
|
|
else if ( glow > 1 ) {
|
|
glow = 1;
|
|
}
|
|
|
|
v = myftol( 255 * glow );
|
|
color[0] = color[1] = color[2] = v;
|
|
color[3] = 255;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, colors++ ) {
|
|
*colors = D3DCOLOR_RGBA(color[0], color[1], color[2], color[3]);
|
|
}
|
|
}
|
|
#else // _XBOX
|
|
void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors )
|
|
{
|
|
int i;
|
|
int v;
|
|
float glow;
|
|
int *colors = ( int * ) dstColors;
|
|
byte color[4];
|
|
|
|
if ( wf->func == GF_NOISE ) {
|
|
glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( backEnd.refdef.floatTime + wf->phase ) * wf->frequency ) * wf->amplitude;
|
|
} else {
|
|
glow = EvalWaveForm( wf ) * tr.identityLight;
|
|
}
|
|
|
|
if ( glow < 0 ) {
|
|
glow = 0;
|
|
}
|
|
else if ( glow > 1 ) {
|
|
glow = 1;
|
|
}
|
|
|
|
v = myftol( 255 * glow );
|
|
color[0] = color[1] = color[2] = v;
|
|
color[3] = 255;
|
|
v = *(int *)color;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, colors++ ) {
|
|
*colors = v;
|
|
}
|
|
}
|
|
#endif // _XBOX
|
|
|
|
/*
|
|
** RB_CalcWaveAlpha
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcWaveAlpha( const waveForm_t *wf, DWORD *dstColors )
|
|
{
|
|
int i;
|
|
int v;
|
|
float glow;
|
|
|
|
glow = EvalWaveFormClamped( wf );
|
|
|
|
v = 255 * glow;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, dstColors ++ )
|
|
{
|
|
DWORD rgb = (DWORD)((*dstColors) & 0x00ffffff);
|
|
*dstColors = rgb | ((v & 0xff) << 24);
|
|
}
|
|
}
|
|
#else
|
|
void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors )
|
|
{
|
|
int i;
|
|
int v;
|
|
float glow;
|
|
|
|
glow = EvalWaveFormClamped( wf );
|
|
|
|
v = 255 * glow;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
|
|
{
|
|
dstColors[3] = v;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** RB_CalcModulateColorsByFog
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcModulateColorsByFog( DWORD *colors ) {
|
|
|
|
}
|
|
#else
|
|
void RB_CalcModulateColorsByFog( unsigned char *colors ) {
|
|
int i;
|
|
float texCoords[SHADER_MAX_VERTEXES][2];
|
|
|
|
// calculate texcoords so we can derive density
|
|
// this is not wasted, because it would only have
|
|
// been previously called if the surface was opaque
|
|
RB_CalcFogTexCoords( texCoords[0] );
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
|
|
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
|
colors[0] *= f;
|
|
colors[1] *= f;
|
|
colors[2] *= f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** RB_CalcModulateAlphasByFog
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcModulateAlphasByFog( DWORD *colors ) {
|
|
|
|
}
|
|
#else
|
|
void RB_CalcModulateAlphasByFog( unsigned char *colors ) {
|
|
int i;
|
|
float texCoords[SHADER_MAX_VERTEXES][2];
|
|
|
|
// calculate texcoords so we can derive density
|
|
// this is not wasted, because it would only have
|
|
// been previously called if the surface was opaque
|
|
RB_CalcFogTexCoords( texCoords[0] );
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
|
|
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
|
colors[3] *= f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** RB_CalcModulateRGBAsByFog
|
|
*/
|
|
#ifdef _XBOX
|
|
void RB_CalcModulateRGBAsByFog( DWORD *colors ) {
|
|
|
|
}
|
|
#else
|
|
void RB_CalcModulateRGBAsByFog( unsigned char *colors ) {
|
|
int i;
|
|
float texCoords[SHADER_MAX_VERTEXES][2];
|
|
|
|
// calculate texcoords so we can derive density
|
|
// this is not wasted, because it would only have
|
|
// been previously called if the surface was opaque
|
|
RB_CalcFogTexCoords( texCoords[0] );
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
|
|
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
|
colors[0] *= f;
|
|
colors[1] *= f;
|
|
colors[2] *= f;
|
|
colors[3] *= f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
====================================================================
|
|
|
|
TEX COORDS
|
|
|
|
====================================================================
|
|
*/
|
|
|
|
/*
|
|
========================
|
|
RB_CalcFogTexCoords
|
|
|
|
To do the clipped fog plane really correctly, we should use
|
|
projected textures, but I don't trust the drivers and it
|
|
doesn't fit our shader data.
|
|
========================
|
|
*/
|
|
|
|
void RB_CalcFogTexCoords( float *st ) {
|
|
int i;
|
|
float *v;
|
|
float s, t;
|
|
float eyeT;
|
|
qboolean eyeOutside;
|
|
fog_t *fog;
|
|
vec3_t localVec;
|
|
vec4_t fogDistanceVector, fogDepthVector;
|
|
|
|
fog = tr.world->fogs + tess.fogNum;
|
|
|
|
// all fogging distance is based on world Z units
|
|
VectorSubtract( backEnd.ori.origin, backEnd.viewParms.ori.origin, localVec );
|
|
#ifdef _XBOX
|
|
fogDistanceVector[0] = backEnd.ori.modelMatrix[2];
|
|
fogDistanceVector[1] = backEnd.ori.modelMatrix[6];
|
|
fogDistanceVector[2] = backEnd.ori.modelMatrix[10];
|
|
#else
|
|
fogDistanceVector[0] = -backEnd.ori.modelMatrix[2];
|
|
fogDistanceVector[1] = -backEnd.ori.modelMatrix[6];
|
|
fogDistanceVector[2] = -backEnd.ori.modelMatrix[10];
|
|
#endif
|
|
fogDistanceVector[3] = DotProduct( localVec, backEnd.viewParms.ori.axis[0] );
|
|
|
|
// scale the fog vectors based on the fog's thickness
|
|
fogDistanceVector[0] *= fog->tcScale;
|
|
fogDistanceVector[1] *= fog->tcScale;
|
|
fogDistanceVector[2] *= fog->tcScale;
|
|
fogDistanceVector[3] *= fog->tcScale;
|
|
|
|
// rotate the gradient vector for this orientation
|
|
if ( fog->hasSurface ) {
|
|
fogDepthVector[0] = fog->surface[0] * backEnd.ori.axis[0][0] +
|
|
fog->surface[1] * backEnd.ori.axis[0][1] + fog->surface[2] * backEnd.ori.axis[0][2];
|
|
fogDepthVector[1] = fog->surface[0] * backEnd.ori.axis[1][0] +
|
|
fog->surface[1] * backEnd.ori.axis[1][1] + fog->surface[2] * backEnd.ori.axis[1][2];
|
|
fogDepthVector[2] = fog->surface[0] * backEnd.ori.axis[2][0] +
|
|
fog->surface[1] * backEnd.ori.axis[2][1] + fog->surface[2] * backEnd.ori.axis[2][2];
|
|
fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.ori.origin, fog->surface );
|
|
|
|
eyeT = DotProduct( backEnd.ori.viewOrigin, fogDepthVector ) + fogDepthVector[3];
|
|
} else {
|
|
eyeT = 1; // non-surface fog always has eye inside
|
|
fogDepthVector[0] = fogDepthVector[1] = fogDepthVector[2] = 0.0f;
|
|
fogDepthVector[3] = 1.0f;
|
|
}
|
|
|
|
// see if the viewpoint is outside
|
|
// this is needed for clipping distance even for constant fog
|
|
|
|
if ( eyeT < 0 ) {
|
|
eyeOutside = qtrue;
|
|
} else {
|
|
eyeOutside = qfalse;
|
|
}
|
|
|
|
fogDistanceVector[3] += 1.0/512;
|
|
|
|
// calculate density for each point
|
|
for (i = 0, v = tess.xyz[0] ; i < tess.numVertexes ; i++, v += 4) {
|
|
// calculate the length in fog
|
|
s = DotProduct( v, fogDistanceVector ) + fogDistanceVector[3];
|
|
t = DotProduct( v, fogDepthVector ) + fogDepthVector[3];
|
|
|
|
// partially clipped fogs use the T axis
|
|
if ( eyeOutside ) {
|
|
if ( t < 1.0 ) {
|
|
t = 1.0/32; // point is outside, so no fogging
|
|
} else {
|
|
t = 1.0/32 + 30.0/32 * t / ( t - eyeT ); // cut the distance at the fog plane
|
|
}
|
|
} else {
|
|
if ( t < 0 ) {
|
|
t = 1.0/32; // point is outside, so no fogging
|
|
} else {
|
|
t = 31.0/32;
|
|
}
|
|
}
|
|
|
|
st[0] = s;
|
|
st[1] = t;
|
|
st += 2;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** RB_CalcEnvironmentTexCoords
|
|
*/
|
|
void RB_CalcEnvironmentTexCoords( float *st )
|
|
{
|
|
int i;
|
|
float *v, *normal;
|
|
vec3_t viewer;
|
|
float d;
|
|
|
|
v = tess.xyz[0];
|
|
normal = tess.normal[0];
|
|
|
|
if (backEnd.currentEntity && backEnd.currentEntity->e.renderfx&RF_FIRST_PERSON) //this is a view model so we must use world lights instead of vieworg
|
|
{
|
|
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
|
|
{
|
|
d = DotProduct (normal, backEnd.currentEntity->lightDir);
|
|
st[0] = normal[0]*d - backEnd.currentEntity->lightDir[0];
|
|
st[1] = normal[1]*d - backEnd.currentEntity->lightDir[1];
|
|
}
|
|
} else { //the normal way
|
|
for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 )
|
|
{
|
|
VectorSubtract (backEnd.ori.viewOrigin, v, viewer);
|
|
VectorNormalizeFast (viewer);
|
|
|
|
d = DotProduct (normal, viewer);
|
|
st[0] = normal[0]*d - 0.5*viewer[0];
|
|
st[1] = normal[1]*d - 0.5*viewer[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** RB_CalcTurbulentTexCoords
|
|
*/
|
|
void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st )
|
|
{
|
|
int i;
|
|
float now;
|
|
|
|
now = ( wf->phase + backEnd.refdef.floatTime * wf->frequency );
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
|
{
|
|
float s = st[0];
|
|
float t = st[1];
|
|
|
|
st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
|
|
st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** RB_CalcScaleTexCoords
|
|
*/
|
|
void RB_CalcScaleTexCoords( const float scale[2], float *st )
|
|
{
|
|
int i;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
|
{
|
|
st[0] *= scale[0];
|
|
st[1] *= scale[1];
|
|
}
|
|
}
|
|
|
|
/*
|
|
** RB_CalcScrollTexCoords
|
|
*/
|
|
void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st )
|
|
{
|
|
int i;
|
|
float timeScale = backEnd.refdef.floatTime;
|
|
float adjustedScrollS, adjustedScrollT;
|
|
|
|
adjustedScrollS = scrollSpeed[0] * timeScale;
|
|
adjustedScrollT = scrollSpeed[1] * timeScale;
|
|
|
|
// clamp so coordinates don't continuously get larger, causing problems
|
|
// with hardware limits
|
|
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
|
|
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
|
{
|
|
st[0] += adjustedScrollS;
|
|
st[1] += adjustedScrollT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** RB_CalcTransformTexCoords
|
|
*/
|
|
void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st )
|
|
{
|
|
int i;
|
|
|
|
for ( i = 0; i < tess.numVertexes; i++, st += 2 )
|
|
{
|
|
float s = st[0];
|
|
float t = st[1];
|
|
|
|
st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
|
|
st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
|
|
}
|
|
}
|
|
|
|
|
|
void RB_CalcRotateTexCoords( float degsPerSecond, float *st )
|
|
{
|
|
float timeScale = backEnd.refdef.floatTime;
|
|
float degs;
|
|
int index;
|
|
float sinValue, cosValue;
|
|
texModInfo_t tmi;
|
|
|
|
degs = -degsPerSecond * timeScale;
|
|
index = degs * ( FUNCTABLE_SIZE / 360.0f );
|
|
|
|
sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
|
|
cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
|
|
|
|
tmi.matrix[0][0] = cosValue;
|
|
tmi.matrix[1][0] = -sinValue;
|
|
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
|
|
|
|
tmi.matrix[0][1] = sinValue;
|
|
tmi.matrix[1][1] = cosValue;
|
|
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
|
|
|
|
RB_CalcTransformTexCoords( &tmi, st );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if (defined(_MSVC_VER) && (defined __i386__))
|
|
#pragma warning(disable: 4035)
|
|
long myftol( float f ) {
|
|
static int tmp;
|
|
__asm fld f
|
|
__asm fistp tmp
|
|
__asm mov eax, tmp
|
|
}
|
|
#pragma warning(default: 4035)
|
|
#endif
|
|
|
|
/*
|
|
** RB_CalcSpecularAlpha
|
|
**
|
|
** Calculates specular coefficient and places it in the alpha channel
|
|
*/
|
|
vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically
|
|
|
|
#ifdef _XBOX
|
|
void RB_CalcSpecularAlpha( DWORD *alphas ) {
|
|
int i;
|
|
float *v, *normal;
|
|
vec3_t viewer, reflected;
|
|
float l, d;
|
|
int a;
|
|
vec3_t lightDir;
|
|
int numVertexes;
|
|
|
|
v = tess.xyz[0];
|
|
normal = tess.normal[0];
|
|
|
|
numVertexes = tess.numVertexes;
|
|
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas ++) {
|
|
float ilength;
|
|
|
|
if (backEnd.currentEntity &&
|
|
(backEnd.currentEntity->e.hModel||backEnd.currentEntity->e.ghoul2) ) //this is a model so we can use world lights instead fake light
|
|
{
|
|
VectorCopy (backEnd.currentEntity->lightDir, lightDir);
|
|
} else {
|
|
VectorSubtract( lightOrigin, v, lightDir );
|
|
VectorNormalizeFast( lightDir );
|
|
}
|
|
// calculate the specular color
|
|
d = 2 * DotProduct (normal, lightDir);
|
|
|
|
// we don't optimize for the d < 0 case since this tends to
|
|
// cause visual artifacts such as faceted "snapping"
|
|
reflected[0] = normal[0]*d - lightDir[0];
|
|
reflected[1] = normal[1]*d - lightDir[1];
|
|
reflected[2] = normal[2]*d - lightDir[2];
|
|
|
|
VectorSubtract (backEnd.ori.viewOrigin, v, viewer);
|
|
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
|
|
l = DotProduct (reflected, viewer);
|
|
l *= ilength;
|
|
|
|
if (l < 0) {
|
|
a = 0;
|
|
} else {
|
|
l = l*l;
|
|
l = l*l;
|
|
a = l * 255;
|
|
if (a > 255) {
|
|
a = 255;
|
|
}
|
|
}
|
|
DWORD rgb = (DWORD)((*alphas) & 0x00ffffff);
|
|
|
|
*alphas = rgb | (a & 0xff) << 24;
|
|
}
|
|
}
|
|
#else // _XBOX
|
|
void RB_CalcSpecularAlpha( unsigned char *alphas ) {
|
|
int i;
|
|
float *v, *normal;
|
|
vec3_t viewer, reflected;
|
|
float l, d;
|
|
int b;
|
|
vec3_t lightDir;
|
|
int numVertexes;
|
|
|
|
v = tess.xyz[0];
|
|
normal = tess.normal[0];
|
|
|
|
alphas += 3;
|
|
|
|
numVertexes = tess.numVertexes;
|
|
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
|
|
float ilength;
|
|
|
|
if (backEnd.currentEntity &&
|
|
(backEnd.currentEntity->e.hModel||backEnd.currentEntity->e.ghoul2) ) //this is a model so we can use world lights instead fake light
|
|
{
|
|
VectorCopy (backEnd.currentEntity->lightDir, lightDir);
|
|
} else {
|
|
VectorSubtract( lightOrigin, v, lightDir );
|
|
VectorNormalizeFast( lightDir );
|
|
}
|
|
// calculate the specular color
|
|
d = 2 * DotProduct (normal, lightDir);
|
|
|
|
// we don't optimize for the d < 0 case since this tends to
|
|
// cause visual artifacts such as faceted "snapping"
|
|
reflected[0] = normal[0]*d - lightDir[0];
|
|
reflected[1] = normal[1]*d - lightDir[1];
|
|
reflected[2] = normal[2]*d - lightDir[2];
|
|
|
|
VectorSubtract (backEnd.ori.viewOrigin, v, viewer);
|
|
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
|
|
l = DotProduct (reflected, viewer);
|
|
l *= ilength;
|
|
|
|
if (l < 0) {
|
|
b = 0;
|
|
} else {
|
|
l = l*l;
|
|
l = l*l;
|
|
b = l * 255;
|
|
if (b > 255) {
|
|
b = 255;
|
|
}
|
|
}
|
|
|
|
*alphas = b;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** RB_CalcDiffuseColor
|
|
**
|
|
** The basic vertex lighting calc
|
|
*/
|
|
void RB_CalcDiffuseColor( unsigned char *colors )
|
|
{
|
|
int i, j;
|
|
float *v, *normal;
|
|
float incoming;
|
|
trRefEntity_t *ent;
|
|
int ambientLightInt;
|
|
vec3_t ambientLight;
|
|
vec3_t lightDir;
|
|
vec3_t directedLight;
|
|
int numVertexes;
|
|
|
|
ent = backEnd.currentEntity;
|
|
ambientLightInt = ent->ambientLightInt;
|
|
VectorCopy( ent->ambientLight, ambientLight );
|
|
VectorCopy( ent->directedLight, directedLight );
|
|
VectorCopy( ent->lightDir, lightDir );
|
|
|
|
v = tess.xyz[0];
|
|
normal = tess.normal[0];
|
|
|
|
numVertexes = tess.numVertexes;
|
|
|
|
for ( i = 0 ; i < numVertexes ; i++, v += 4, normal += 4)
|
|
{
|
|
incoming = DotProduct (normal, lightDir);
|
|
if ( incoming <= 0 ) {
|
|
*(int *)&colors[i*4] = ambientLightInt;
|
|
continue;
|
|
}
|
|
j = myftol( ambientLight[0] + incoming * directedLight[0] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+0] = j;
|
|
|
|
j = myftol( ambientLight[1] + incoming * directedLight[1] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+1] = j;
|
|
|
|
j = myftol( ambientLight[2] + incoming * directedLight[2] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+2] = j;
|
|
|
|
colors[i*4+3] = 255;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** RB_CalcDiffuseColorEntity
|
|
**
|
|
** The basic vertex lighting calc * Entity Color
|
|
*/
|
|
void RB_CalcDiffuseEntityColor( unsigned char *colors )
|
|
{
|
|
int i;
|
|
float *v, *normal;
|
|
float incoming;
|
|
trRefEntity_t *ent;
|
|
int ambientLightInt;
|
|
vec3_t ambientLight;
|
|
vec3_t lightDir;
|
|
vec3_t directedLight;
|
|
int numVertexes;
|
|
float j,r,g,b;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
{//error, use the normal lighting
|
|
RB_CalcDiffuseColor(colors);
|
|
}
|
|
|
|
ent = backEnd.currentEntity;
|
|
VectorCopy( ent->ambientLight, ambientLight );
|
|
VectorCopy( ent->directedLight, directedLight );
|
|
VectorCopy( ent->lightDir, lightDir );
|
|
|
|
r = backEnd.currentEntity->e.shaderRGBA[0]/255.0f;
|
|
g = backEnd.currentEntity->e.shaderRGBA[1]/255.0f;
|
|
b = backEnd.currentEntity->e.shaderRGBA[2]/255.0f;
|
|
|
|
((byte *)&ambientLightInt)[0] = myftol( r*ent->ambientLight[0] );
|
|
((byte *)&ambientLightInt)[1] = myftol( g*ent->ambientLight[1] );
|
|
((byte *)&ambientLightInt)[2] = myftol( b*ent->ambientLight[2] );
|
|
((byte *)&ambientLightInt)[3] = backEnd.currentEntity->e.shaderRGBA[3];
|
|
|
|
v = tess.xyz[0];
|
|
normal = tess.normal[0];
|
|
|
|
numVertexes = tess.numVertexes;
|
|
|
|
for ( i = 0 ; i < numVertexes ; i++, v += 4, normal += 4)
|
|
{
|
|
incoming = DotProduct (normal, lightDir);
|
|
if ( incoming <= 0 ) {
|
|
*(int *)&colors[i*4] = ambientLightInt;
|
|
continue;
|
|
}
|
|
j = ( ambientLight[0] + incoming * directedLight[0] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+0] = myftol(j*r);
|
|
|
|
j = ( ambientLight[1] + incoming * directedLight[1] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+1] = myftol(j*g);
|
|
|
|
j = ( ambientLight[2] + incoming * directedLight[2] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+2] = myftol(j*b);
|
|
|
|
colors[i*4+3] = backEnd.currentEntity->e.shaderRGBA[3];
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------
|
|
void RB_CalcDisintegrateColors( unsigned char *colors, colorGen_t rgbGen )
|
|
{
|
|
int i, numVertexes;
|
|
float dis, threshold;
|
|
float *v;
|
|
vec3_t temp;
|
|
refEntity_t *ent;
|
|
|
|
ent = &backEnd.currentEntity->e;
|
|
v = tess.xyz[0];
|
|
|
|
// calculate the burn threshold at the given time, anything that passes the threshold will get burnt
|
|
threshold = (backEnd.refdef.time - ent->endTime) * 0.045f; // endTime is really the start time, maybe I should just use a completely meaningless substitute?
|
|
|
|
numVertexes = tess.numVertexes;
|
|
|
|
if ( ent->renderfx & RF_DISINTEGRATE1 )
|
|
{
|
|
// this handles the blacken and fading out of the regular player model
|
|
for ( i = 0 ; i < numVertexes ; i++, v += 4 )
|
|
{
|
|
VectorSubtract( backEnd.currentEntity->e.oldorigin, v, temp );
|
|
|
|
dis = VectorLengthSquared( temp );
|
|
|
|
if ( dis < threshold * threshold )
|
|
{
|
|
// completely disintegrated
|
|
colors[i*4+3] = 0x00;
|
|
}
|
|
else if ( dis < threshold * threshold + 60 )
|
|
{
|
|
// blacken before fading out
|
|
colors[i*4+0] = 0x0;
|
|
colors[i*4+1] = 0x0;
|
|
colors[i*4+2] = 0x0;
|
|
colors[i*4+3] = 0xff;
|
|
}
|
|
else if ( dis < threshold * threshold + 150 )
|
|
{
|
|
// darken more
|
|
if ( rgbGen == CGEN_LIGHTING_DIFFUSE_ENTITY )
|
|
{
|
|
colors[i*4+0] = backEnd.currentEntity->e.shaderRGBA[0]*0x6f/255.0f;
|
|
colors[i*4+1] = backEnd.currentEntity->e.shaderRGBA[1]*0x6f/255.0f;
|
|
colors[i*4+2] = backEnd.currentEntity->e.shaderRGBA[2]*0x6f/255.0f;
|
|
}
|
|
else
|
|
{
|
|
colors[i*4+0] = 0x6f;
|
|
colors[i*4+1] = 0x6f;
|
|
colors[i*4+2] = 0x6f;
|
|
}
|
|
colors[i*4+3] = 0xff;
|
|
}
|
|
else if ( dis < threshold * threshold + 180 )
|
|
{
|
|
// darken at edge of burn
|
|
if ( rgbGen == CGEN_LIGHTING_DIFFUSE_ENTITY )
|
|
{
|
|
colors[i*4+0] = backEnd.currentEntity->e.shaderRGBA[0]*0xaf/255.0f;
|
|
colors[i*4+1] = backEnd.currentEntity->e.shaderRGBA[1]*0xaf/255.0f;
|
|
colors[i*4+2] = backEnd.currentEntity->e.shaderRGBA[2]*0xaf/255.0f;
|
|
}
|
|
else
|
|
{
|
|
colors[i*4+0] = 0xaf;
|
|
colors[i*4+1] = 0xaf;
|
|
colors[i*4+2] = 0xaf;
|
|
}
|
|
colors[i*4+3] = 0xff;
|
|
}
|
|
else
|
|
{
|
|
// not burning at all yet
|
|
if ( rgbGen == CGEN_LIGHTING_DIFFUSE_ENTITY )
|
|
{
|
|
colors[i*4+0] = backEnd.currentEntity->e.shaderRGBA[0];
|
|
colors[i*4+1] = backEnd.currentEntity->e.shaderRGBA[1];
|
|
colors[i*4+2] = backEnd.currentEntity->e.shaderRGBA[2];
|
|
}
|
|
else
|
|
{
|
|
colors[i*4+0] = 0xff;
|
|
colors[i*4+1] = 0xff;
|
|
colors[i*4+2] = 0xff;
|
|
}
|
|
colors[i*4+3] = 0xff;
|
|
}
|
|
}
|
|
}
|
|
else if ( ent->renderfx & RF_DISINTEGRATE2 )
|
|
{
|
|
// this handles the glowing, burning bit that scales away from the model
|
|
for ( i = 0 ; i < numVertexes ; i++, v += 4 )
|
|
{
|
|
VectorSubtract( backEnd.currentEntity->e.oldorigin, v, temp );
|
|
|
|
dis = VectorLengthSquared( temp );
|
|
|
|
if ( dis < threshold * threshold )
|
|
{
|
|
// done burning
|
|
colors[i*4+0] = 0x00;
|
|
colors[i*4+1] = 0x00;
|
|
colors[i*4+2] = 0x00;
|
|
colors[i*4+3] = 0x00;
|
|
}
|
|
else
|
|
{
|
|
// still full burn
|
|
colors[i*4+0] = 0xff;
|
|
colors[i*4+1] = 0xff;
|
|
colors[i*4+2] = 0xff;
|
|
colors[i*4+3] = 0xff;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------
|
|
void RB_CalcDisintegrateVertDeform( void )
|
|
{
|
|
float *xyz = ( float * ) tess.xyz;
|
|
float *normal = ( float * ) tess.normal;
|
|
float scale;
|
|
vec3_t temp;
|
|
|
|
if ( backEnd.currentEntity->e.renderfx & RF_DISINTEGRATE2 )
|
|
{
|
|
float threshold = (backEnd.refdef.time - backEnd.currentEntity->e.endTime) * 0.045f;
|
|
|
|
for ( int i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
|
|
{
|
|
VectorSubtract( backEnd.currentEntity->e.oldorigin, xyz, temp );
|
|
|
|
scale = VectorLengthSquared( temp );
|
|
|
|
if ( scale < threshold * threshold )
|
|
{
|
|
xyz[0] += normal[0] * 2.0f;
|
|
xyz[1] += normal[1] * 2.0f;
|
|
xyz[2] += normal[2] * 0.5f;
|
|
}
|
|
else if ( scale < threshold * threshold + 50 )
|
|
{
|
|
xyz[0] += normal[0] * 1.0f;
|
|
xyz[1] += normal[1] * 1.0f;
|
|
// xyz[2] += normal[2] * 1;
|
|
}
|
|
}
|
|
}
|
|
}
|