jedi-academy/codemp/renderer/tr_image_xbox.cpp
2013-04-23 15:21:39 +10:00

2579 lines
56 KiB
C++

// tr_image.c
// leave this as first line for PCH reasons...
//
#include "../server/exe_headers.h"
#include "tr_local.h"
#include "../qcommon/sstring.h"
#include "../zlib/zlib.h"
#include "../png/png.h"
#include "../qcommon/sstring.h"
static byte s_intensitytable[256];
static unsigned char s_gammatable[256];
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
int gl_filter_max = GL_LINEAR;
#define FILE_HASH_SIZE 1024 // actually, the shader code needs this (from another module, great).
//static image_t* hashTable[FILE_HASH_SIZE];
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct {
char *name;
int minimize, maximize;
} textureMode_t;
textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
/*
================
return a hash value for the filename
================
*/
long generateHashValue( const char *fname ) {
int i;
long hash;
char letter;
hash = 0;
i = 0;
while (fname[i] != '\0') {
letter = tolower(fname[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
hash+=(long)(letter)*(i+119);
i++;
}
hash &= (FILE_HASH_SIZE-1);
return hash;
}
// makeup a nice clean, consistant name to query for and file under, for map<> usage...
//
char *GenerateImageMappingName( const char *name )
{
static char sName[MAX_QPATH];
int i=0;
char letter;
while (name[i] != '\0' && i<MAX_QPATH-1)
{
letter = tolower(name[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
sName[i++] = letter;
}
sName[i]=0;
return &sName[0];
}
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
int i;
image_t *glt;
for ( i=0 ; i< 6 ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
break;
}
}
if ( i == 6 ) {
Com_Printf ("bad filter name\n");
for ( i=0 ; i< 6 ; i++ ) {
Com_Printf( "%s\n",modes[i].name);
}
return;
}
gl_filter_min = modes[i].minimize;
gl_filter_max = modes[i].maximize;
// change all the existing mipmap texture objects
// int iNumImages =
R_Images_StartIteration();
while ( (glt = R_Images_GetNextIteration()) != NULL)
{
if ( glt->mipcount ) {
GL_Bind (glt);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
if(glConfig.maxTextureFilterAnisotropy) {
if(r_ext_texture_filter_anisotropic->integer>1) {
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value); // 2.0f
} else {
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
}
}
}
}
}
static float R_BytesPerTex (int format)
{
switch ( format ) {
case 1:
//"I "
return 1;
break;
case 2:
//"IA "
return 2;
break;
case 3:
//"RGB "
return glConfig.colorBits/8.0f;
break;
case 4:
//"RGBA "
return glConfig.colorBits/8.0f;
break;
case GL_RGBA4:
//"RGBA4"
return 2;
break;
case GL_RGB5:
//"RGB5 "
return 2;
break;
case GL_RGBA8:
//"RGBA8"
return 4;
break;
case GL_RGB8:
//"RGB8"
return 4;
break;
case GL_RGB4_S3TC:
//"S3TC "
return 0.33333f;
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
//"DXT1 "
return 0.33333f;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
//"DXT5 "
return 1;
break;
case GL_DDS1_EXT:
//"DDS1 "
return 0.5f;
break;
case GL_DDS5_EXT:
//"DDS5 "
return 1;
break;
case GL_DDS_RGB16_EXT:
//"DDS16"
return 2;
break;
case GL_DDS_RGBA32_EXT:
//"DDS32"
return 4;
break;
default:
//"???? "
return 4;
}
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
int i=0;
image_t *image;
int texels = 0;
float texBytes = 0.0f;
const char *yesno[] = {"no ", "yes"};
Com_Printf ( "\n -w-- -h-- -mm- -if- wrap --name-------\n");
int iNumImages = R_Images_StartIteration();
while ( (image = R_Images_GetNextIteration()) != NULL)
{
texels += image->width*image->height;
texBytes += image->width*image->height * R_BytesPerTex (image->internalFormat);
Com_Printf ( "%4i: %4i %4i %s ",
i, image->width, image->height, yesno[image->mipcount] );
switch ( image->internalFormat ) {
case 1:
Com_Printf( "I " );
break;
case 2:
Com_Printf( "IA " );
break;
case 3:
Com_Printf( "RGB " );
break;
case 4:
Com_Printf( "RGBA " );
break;
case GL_RGBA8:
Com_Printf( "RGBA8" );
break;
case GL_RGB8:
Com_Printf( "RGB8 " );
break;
case GL_RGB4_S3TC:
Com_Printf( "S3TC " );
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
Com_Printf( "DXT1 " );
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
Com_Printf( "DXT5 " );
break;
case GL_RGBA4:
Com_Printf( "RGBA4" );
break;
case GL_RGB5:
Com_Printf( "RGB5 " );
break;
case GL_DDS1_EXT:
Com_Printf( "DDS1 " );
break;
case GL_DDS5_EXT:
Com_Printf( "DDS5 " );
break;
case GL_DDS_RGB16_EXT:
Com_Printf( "DDS16" );
break;
case GL_DDS_RGBA32_EXT:
Com_Printf( "DDS32" );
break;
default:
Com_Printf( "???? " );
}
switch ( image->wrapClampMode ) {
case GL_REPEAT:
Com_Printf( "rept " );
break;
case GL_CLAMP:
Com_Printf( "clmp " );
break;
case GL_CLAMP_TO_EDGE:
Com_Printf( "clpE " );
break;
default:
Com_Printf( "%4i ", image->wrapClampMode );
break;
}
i++;
}
Com_Printf (" ---------\n");
Com_Printf (" -w-- -h-- -mm- -if- wrap --name-------\n");
Com_Printf (" %i total texels (not including mipmaps)\n", texels );
Com_Printf (" %.2fMB total texture mem (not including mipmaps)\n", texBytes/1048576.0f );
Com_Printf (" %i total images\n\n", iNumImages );
}
//=======================================================================
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
static void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
{
if ( only_gamma )
{
if ( !glConfig.deviceSupportsGamma )
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
}
else
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
if ( glConfig.deviceSupportsGamma )
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
}
else
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Uses temp mem, but then copies back to input, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = (unsigned int *) Z_Malloc( outWidth * outHeight * 4, TAG_TEMP_WORKSPACE, qfalse );
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = (byte *) ( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
outpix[k] = total / 36;
}
}
}
memcpy( in, temp, outWidth * outHeight * 4 );
Z_Free( temp );
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap (byte *in, int width, int height) {
int i, j;
byte *out;
int row;
if ( width == 1 && height == 1 ) {
return;
}
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( (unsigned *)in, width, height );
return;
}
row = width * 4;
out = in;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] = ( in[0] + in[4] )>>1;
out[1] = ( in[1] + in[5] )>>1;
out[2] = ( in[2] + in[6] )>>1;
out[3] = ( in[3] + in[7] )>>1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
}
}
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
int i;
int inverseAlpha;
int premult[3];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
byte mipBlendColors[16][4] = {
{0,0,0,0},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
};
/*
===============
Upload32
===============
*/
static void Upload32( unsigned *data,
int img_width, int img_height,
GLenum format,
int mipcount,
qboolean picmip,
qboolean isLightmap,
int *pformat )
{
if (format == GL_RGBA)
{
int samples;
int i, c;
byte *scan;
int width = img_width;
int height = img_height;
//
// perform optional picmip operation
//
if ( picmip ) {
for(i = 0; i < r_picmip->integer; i++) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if (width < 1) {
width = 1;
}
if (height < 1) {
height = 1;
}
}
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
}
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width*height;
scan = ((byte *)data);
samples = 3;
for ( i = 0; i < c; i++ )
{
if ( scan[i*4 + 3] != 255 )
{
samples = 4;
break;
}
}
// select proper internal format
if ( samples == 3 )
{
if ( isLightmap && r_texturebitslm->integer > 0 )
{
// Allow different bit depth when we are a lightmap
if ( r_texturebitslm->integer == 16 )
{
*pformat = GL_RGB5;
}
else if ( r_texturebitslm->integer == 32 )
{
*pformat = GL_RGB8;
}
}
else if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
*pformat = GL_RGB8;
}
else
{
*pformat = 3;
}
}
else if ( samples == 4 )
{
if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
*pformat = GL_RGBA8;
}
else
{
*pformat = 4;
}
}
// copy or resample data as appropriate for first MIP level
if (!mipcount)
{
qglTexImage2D (GL_TEXTURE_2D, 0, *pformat, width, height, 0,
GL_RGBA, GL_UNSIGNED_BYTE, data);
}
else
{
if (mipcount)
{
int miplevel = 0;
int total = 1;
int n = width;
if (height > n) n = height;
while (n > 1)
{
n >>= 1;
++total;
}
qglTexImage2DEXT (GL_TEXTURE_2D, 0, total, *pformat, width, height,
0, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
}
else
{
*pformat = format;
qglTexImage2DEXT (GL_TEXTURE_2D, 0, mipcount,
format, img_width, img_height, 0, format,
GL_UNSIGNED_BYTE, data);
}
if (mipcount)
{
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0)
{
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value); // 2.0f
}
}
else
{
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
}
typedef tmap (int, image_t *) AllocatedImages_t;
AllocatedImages_t* AllocatedImages = NULL;
AllocatedImages_t::iterator itAllocatedImages;
int giTextureBindNum = 1024; // will be set to this anyway at runtime, but wtf?
// return = number of images in the list, for those interested
//
int R_Images_StartIteration(void)
{
if(!AllocatedImages)
return 0;
itAllocatedImages = AllocatedImages->begin();
return AllocatedImages->size();
}
image_t *R_Images_GetNextIteration(void)
{
if(!AllocatedImages)
return NULL;
if (itAllocatedImages == AllocatedImages->end())
return NULL;
image_t *pImage = (*itAllocatedImages).second;
++itAllocatedImages;
return pImage;
}
// clean up anything to do with an image_t struct, but caller will have to clear the internal to an image_t struct ready for either struct free() or overwrite...
//
static void R_Images_DeleteImageContents( image_t *pImage )
{
assert(pImage); // should never be called with NULL
if (pImage)
{
qglDeleteTextures( 1, &pImage->texnum );
Z_Free(pImage);
}
}
static void GL_ResetBinds(void)
{
memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglBindTexture )
{
if ( qglActiveTextureARB )
{
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
}
else
{
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
}
// special function used in conjunction with "devmapbsp"...
//
void R_Images_DeleteLightMaps(void)
{
qboolean bEraseOccured = qfalse;
for (AllocatedImages_t::iterator itImage = AllocatedImages->begin(); itImage != AllocatedImages->end(); bEraseOccured?itImage:++itImage)
{
bEraseOccured = qfalse;
image_t *pImage = (*itImage).second;
if (pImage->isLightmap)
{
R_Images_DeleteImageContents(pImage);
AllocatedImages->erase(itImage++);
bEraseOccured = qtrue;
}
}
GL_ResetBinds();
}
// special function currently only called by Dissolve code...
//
void R_Images_DeleteImage(image_t *pImage)
{
// Even though we supply the image handle, we need to get the corresponding iterator entry...
//
AllocatedImages_t::iterator itImage = AllocatedImages->find(pImage->imgCode);
if (itImage != AllocatedImages->end())
{
R_Images_DeleteImageContents(pImage);
AllocatedImages->erase(itImage);
}
else
{
assert(0);
}
}
// called only at app startup, vid_restart, app-exit
//
void R_Images_Clear(void)
{
image_t *pImage;
// int iNumImages =
R_Images_StartIteration();
while ( (pImage = R_Images_GetNextIteration()) != NULL)
{
R_Images_DeleteImageContents(pImage);
}
AllocatedImages->clear();
giTextureBindNum = 1024;
}
void RE_RegisterImages_Info_f( void )
{
}
// implement this if you need to, do a find for the caller. I don't need it though, so far.
//
//void RE_RegisterImages_LevelLoadBegin(const char *psMapName);
// currently, this just goes through all the images and dumps any not referenced on this level...
//
qboolean RE_RegisterImages_LevelLoadEnd(void)
{
qboolean bEraseOccured = qfalse;
for (AllocatedImages_t::iterator itImage = AllocatedImages->begin(); itImage != AllocatedImages->end(); bEraseOccured?itImage:++itImage)
{
bEraseOccured = qfalse;
image_t *pImage = (*itImage).second;
// don't un-register system shaders (*fog, *dlight, *white, *default), but DO de-register lightmaps ("$<mapname>/lightmap%d")
if (!pImage->isSystem)
{
// image used on this level?
//
if ( pImage->iLastLevelUsedOn != RE_RegisterMedia_GetLevel() )
{ // nope, so dump it...
//Com_Printf( PRINT_DEVELOPER, "Dumping image \"%s\"\n",pImage->imgName);
R_Images_DeleteImageContents(pImage);
itImage = AllocatedImages->erase(itImage);
bEraseOccured = qtrue;
}
}
}
GL_ResetBinds();
return bEraseOccured;
}
// returns image_t struct if we already have this, else NULL. No disk-open performed
// (important for creating default images).
//
// This is called by both R_FindImageFile and anything that creates default images...
//
static image_t *R_FindImageFile_NoLoad(const char *name, int mipcount, qboolean allowPicmip, int glWrapClampMode )
{
if (!name) {
return NULL;
}
char *pName = GenerateImageMappingName(name);
//
// see if the image is already loaded
//
int code = crc32(0, (const Bytef *)pName, strlen(pName));
AllocatedImages_t::iterator itAllocatedImage = AllocatedImages->find(code);
if (itAllocatedImage != AllocatedImages->end())
{
image_t *pImage = (*itAllocatedImage).second;
// the white image can be used with any set of parms, but other mismatches are errors...
//
if ( strcmp( pName, "*white" ) ) {
if ( !pImage->mipcount != !mipcount ) {
// Test is more lax, but also prevents tons of false positives
Com_Printf( "WARNING: reused image %s with mixed mipmap parm\n", pName );
}
if ( pImage->allowPicmip != !!allowPicmip ) {
Com_Printf( "WARNING: reused image %s with mixed allowPicmip parm\n", pName );
}
}
pImage->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
return pImage;
}
return NULL;
}
/*
================
R_CreateImage
This is the only way any image_t are created
================
*/
image_t *R_CreateImage( const char *name, const byte *pic, int width, int height,
GLenum format, int mipcount, qboolean allowPicmip,
int glWrapClampMode )
{
image_t *image;
qboolean isLightmap = qfalse;
if (strlen(name) >= MAX_QPATH ) {
Com_Error (ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name);
}
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
glWrapClampMode = GL_CLAMP_TO_EDGE;
}
if (name[0] == '$')
{
isLightmap = qtrue;
}
if ( (width&(width-1)) || (height&(height-1)) )
{
Com_Error( ERR_FATAL, "R_CreateImage: %s dimensions (%i x %i) not power of 2!\n",name,width,height);
}
image = R_FindImageFile_NoLoad(name, mipcount, allowPicmip, glWrapClampMode );
if (image) {
return image;
}
image = (image_t*) Z_Malloc( sizeof( image_t ), TAG_IMAGE_T, qtrue );
qglGenTextures(1, (GLuint*)&image->texnum);
image->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
image->mipcount = mipcount;
image->allowPicmip = allowPicmip;
image->imgCode = crc32(0, (const Bytef *)name, strlen(name));
image->width = width;
image->height = height;
image->isSystem = (name[0] == '*');
image->isLightmap = isLightmap;
GL_SelectTexture( 0 );
GL_Bind(image);
Upload32( (unsigned *)pic, image->width, image->height,
format,
image->mipcount,
allowPicmip,
isLightmap,
&image->internalFormat );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
qglBindTexture( GL_TEXTURE_2D, 0 ); //jfm: i don't know why this is here, but it breaks lightmaps when there's only 1
glState.currenttextures[glState.currenttmu] = 0; //mark it not bound
const char* psNewName = GenerateImageMappingName(name);
image->imgCode = crc32(0, (const Bytef *)psNewName, strlen(psNewName));
(*AllocatedImages)[ image->imgCode ] = image;
return image;
}
void R_CreateAutomapImage( const char *name, const byte *pic, int width, int height,
qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode )
{
R_CreateImage(name, pic, width, height, GL_RGBA, mipmap, allowPicmip, glWrapClampMode);
}
/*
=========================================================
TARGA LOADING
=========================================================
*/
/*
Ghoul2 Insert Start
*/
bool LoadTGAPalletteImage ( const char *name, byte **pic, int *width, int *height)
{
int columns, rows, numPixels;
byte *buf_p;
byte *buffer;
TargaHeader targa_header;
byte *dataStart;
*pic = NULL;
//
// load the file
//
FS_ReadFile ( ( char * ) name, (void **)&buffer);
if (!buffer) {
return false;
}
buf_p = buffer;
targa_header.id_length = *buf_p++;
targa_header.colormap_type = *buf_p++;
targa_header.image_type = *buf_p++;
targa_header.colormap_index = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.colormap_length = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.colormap_size = *buf_p++;
targa_header.x_origin = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.y_origin = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.width = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.height = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.pixel_size = *buf_p++;
targa_header.attributes = *buf_p++;
if (targa_header.image_type!=1 )
{
Com_Error (ERR_DROP, "LoadTGAPalletteImage: Only type 1 (uncompressed pallettised) TGA images supported\n");
}
if ( targa_header.colormap_type == 0 )
{
Com_Error( ERR_DROP, "LoadTGAPalletteImage: colormaps ONLY supported\n" );
}
columns = targa_header.width;
rows = targa_header.height;
numPixels = columns * rows;
if (width)
*width = columns;
if (height)
*height = rows;
*pic = (unsigned char *) Z_Malloc (numPixels, TAG_TEMP_WORKSPACE, qfalse);
if (targa_header.id_length != 0)
{
buf_p += targa_header.id_length; // skip TARGA image comment
}
dataStart = buf_p + (targa_header.colormap_length * (targa_header.colormap_size / 4));
memcpy(*pic, dataStart, numPixels);
FS_FreeFile (buffer);
return true;
}
/*
Ghoul2 Insert End
*/
// My TGA loader...
//
//---------------------------------------------------
#pragma pack(push,1)
typedef struct
{
byte byIDFieldLength; // must be 0
byte byColourmapType; // 0 = truecolour, 1 = paletted, else bad
byte byImageType; // 1 = colour mapped (palette), uncompressed, 2 = truecolour, uncompressed, else bad
word w1stColourMapEntry; // must be 0
word wColourMapLength; // 256 for 8-bit palettes, else 0 for true-colour
byte byColourMapEntrySize; // 24 for 8-bit palettes, else 0 for true-colour
word wImageXOrigin; // ignored
word wImageYOrigin; // ignored
word wImageWidth; // in pixels
word wImageHeight; // in pixels
byte byImagePlanes; // bits per pixel (8 for paletted, else 24 for true-colour)
byte byScanLineOrder; // Image descriptor bytes
// bits 0-3 = # attr bits (alpha chan)
// bits 4-5 = pixel order/dir
// bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way)
} TGAHeader_t;
#pragma pack(pop)
// *pic == pic, else NULL for failed.
//
// returns false if found but had a format error, else true for either OK or not-found (there's a reason for this)
//
void LoadTGA ( const char *name, byte **pic, int *width, int *height)
{
char sErrorString[1024];
bool bFormatErrors = false;
// these don't need to be declared or initialised until later, but the compiler whines that 'goto' skips them.
//
byte *pRGBA = NULL;
byte *pOut = NULL;
byte *pIn = NULL;
*pic = NULL;
#define TGA_FORMAT_ERROR(blah) {sprintf(sErrorString,blah); bFormatErrors = true; goto TGADone;}
//#define TGA_FORMAT_ERROR(blah) Com_Error( ERR_DROP, blah );
//
// load the file
//
byte *pTempLoadedBuffer = 0;
FS_ReadFile ( ( char * ) name, (void **)&pTempLoadedBuffer);
if (!pTempLoadedBuffer) {
return;
}
TGAHeader_t *pHeader = (TGAHeader_t *) pTempLoadedBuffer;
if (pHeader->byColourmapType!=0)
{
TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" );
}
if (pHeader->byImageType != 2 && pHeader->byImageType != 3 && pHeader->byImageType != 10)
{
TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RLE-RGB) images supported\n");
}
if (pHeader->w1stColourMapEntry != 0)
{
TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" );
}
if (pHeader->wColourMapLength !=0 && pHeader->wColourMapLength != 256)
{
TGA_FORMAT_ERROR("LoadTGA: ColourMapLength must be either 0 or 256\n" );
}
if (pHeader->byColourMapEntrySize != 0 && pHeader->byColourMapEntrySize != 24)
{
TGA_FORMAT_ERROR("LoadTGA: ColourMapEntrySize must be either 0 or 24\n" );
}
if ( ( pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) && (pHeader->byImagePlanes != 8 && pHeader->byImageType != 3))
{
TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported\n");
}
if ((pHeader->byScanLineOrder&0x30)!=0x00 &&
(pHeader->byScanLineOrder&0x30)!=0x10 &&
(pHeader->byScanLineOrder&0x30)!=0x20 &&
(pHeader->byScanLineOrder&0x30)!=0x30
)
{
TGA_FORMAT_ERROR("LoadTGA: ScanLineOrder must be either 0x00,0x10,0x20, or 0x30\n");
}
// these last checks are so i can use ID's RLE-code. I don't dare fiddle with it or it'll probably break...
//
if ( pHeader->byImageType == 10)
{
if ((pHeader->byScanLineOrder & 0x30) != 0x00)
{
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be in bottom-to-top format\n");
}
if (pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) // probably won't happen, but avoids compressed greyscales?
{
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be 24 or 32 bit\n");
}
}
// now read the actual bitmap in...
//
// Image descriptor bytes
// bits 0-3 = # attr bits (alpha chan)
// bits 4-5 = pixel order/dir
// bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way)
//
int iYStart,iXStart,iYStep,iXStep;
switch(pHeader->byScanLineOrder & 0x30)
{
default: // default case stops the compiler complaining about using uninitialised vars
case 0x00: // left to right, bottom to top
iXStart = 0;
iXStep = 1;
iYStart = pHeader->wImageHeight-1;
iYStep = -1;
break;
case 0x10: // right to left, bottom to top
iXStart = pHeader->wImageWidth-1;
iXStep = -1;
iYStart = pHeader->wImageHeight-1;
iYStep = -1;
break;
case 0x20: // left to right, top to bottom
iXStart = 0;
iXStep = 1;
iYStart = 0;
iYStep = 1;
break;
case 0x30: // right to left, top to bottom
iXStart = pHeader->wImageWidth-1;
iXStep = -1;
iYStart = 0;
iYStep = 1;
break;
}
// feed back the results...
//
if (width)
*width = pHeader->wImageWidth;
if (height)
*height = pHeader->wImageHeight;
pRGBA = (byte *) Z_Malloc (pHeader->wImageWidth * pHeader->wImageHeight * 4, TAG_TEMP_WORKSPACE, qfalse);
*pic = pRGBA;
pOut = pRGBA;
pIn = pTempLoadedBuffer + sizeof(*pHeader);
// I don't know if this ID-thing here is right, since comments that I've seen are at the end of the file,
// with a zero in this field. However, may as well...
//
if (pHeader->byIDFieldLength != 0)
pIn += pHeader->byIDFieldLength; // skip TARGA image comment
byte red,green,blue,alpha;
if ( pHeader->byImageType == 2 || pHeader->byImageType == 3 ) // RGB or greyscale
{
for (int y=iYStart, iYCount=0; iYCount<pHeader->wImageHeight; y+=iYStep, iYCount++)
{
pOut = pRGBA + y * pHeader->wImageWidth *4;
for (int x=iXStart, iXCount=0; iXCount<pHeader->wImageWidth; x+=iXStep, iXCount++)
{
switch (pHeader->byImagePlanes)
{
case 8:
blue = *pIn++;
green = blue;
red = blue;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = 255;
break;
case 24:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = 255;
break;
case 32:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = alpha;
break;
default:
assert(0); // if we ever hit this, someone deleted a header check higher up
TGA_FORMAT_ERROR("LoadTGA: Image can only have 8, 24 or 32 planes for RGB/greyscale\n");
break;
}
}
}
}
else
if (pHeader->byImageType == 10) // RLE-RGB
{
// I've no idea if this stuff works, I normally reject RLE targas, but this is from ID's code
// so maybe I should try and support it...
//
byte packetHeader, packetSize, j;
for (int y = pHeader->wImageHeight-1; y >= 0; y--)
{
pOut = pRGBA + y * pHeader->wImageWidth *4;
for (int x=0; x<pHeader->wImageWidth;)
{
packetHeader = *pIn++;
packetSize = 1 + (packetHeader & 0x7f);
if (packetHeader & 0x80) // run-length packet
{
switch (pHeader->byImagePlanes)
{
case 24:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = 255;
break;
case 32:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = *pIn++;
break;
default:
assert(0); // if we ever hit this, someone deleted a header check higher up
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n");
break;
}
for (j=0; j<packetSize; j++)
{
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = alpha;
x++;
if (x == pHeader->wImageWidth) // run spans across rows
{
x = 0;
if (y > 0)
y--;
else
goto breakOut;
pOut = pRGBA + y * pHeader->wImageWidth * 4;
}
}
}
else
{ // non run-length packet
for (j=0; j<packetSize; j++)
{
switch (pHeader->byImagePlanes)
{
case 24:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = 255;
break;
case 32:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = alpha;
break;
default:
assert(0); // if we ever hit this, someone deleted a header check higher up
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n");
break;
}
x++;
if (x == pHeader->wImageWidth) // pixel packet run spans across rows
{
x = 0;
if (y > 0)
y--;
else
goto breakOut;
pOut = pRGBA + y * pHeader->wImageWidth * 4;
}
}
}
}
breakOut:;
}
}
TGADone:
FS_FreeFile (pTempLoadedBuffer);
if (bFormatErrors)
{
Com_Error( ERR_DROP, "%s( File: \"%s\" )\n",sErrorString,name);
}
}
/*
=========================================================
DDS LOADING
=========================================================
*/
void LoadDDS ( const char *name, byte **pic, int *width, int *height, int *mipcount, GLenum *format )
{
fileHandle_t h;
int len = FS_FOpenFileRead( name, &h, qfalse );
if ( h == 0 )
{
return;
}
*pic = (byte*)Z_Malloc( len, TAG_TEMP_WORKSPACE, qfalse , 32);
FS_Read( *pic, len, h );
FS_FCloseFile( h );
DWORD dds = MAKEFOURCC('D', 'D', 'S', ' ');
if (*(DWORD*)(*pic) != dds)
{
FS_FreeFile (*pic);
*pic = NULL;
return;
}
DDS_HEADER *desc = (DDS_HEADER *)(*pic + sizeof(DWORD));
DWORD dxt1 = MAKEFOURCC('D', 'X', 'T', '1');
DWORD dxt5 = MAKEFOURCC('D', 'X', 'T', '5');
if (desc->ddspf.dwFourCC == dxt1)
{
*format = GL_DDS1_EXT;
}
else if (desc->ddspf.dwFourCC == dxt5)
{
*format = GL_DDS5_EXT;
}
else if (desc->ddspf.dwRGBBitCount == 16)
{
*format = GL_DDS_RGB16_EXT;
}
else if (desc->ddspf.dwRGBBitCount == 32)
{
*format = GL_DDS_RGBA32_EXT;
}
else
{
FS_FreeFile (*pic);
*pic = NULL;
return;
}
*width = desc->dwWidth;
*height = desc->dwHeight;
*mipcount = desc->dwMipMapCount;
}
//===================================================================
/*
=================
R_LoadImage
Loads any of the supported image types into a cannonical
32 bit format.
=================
*/
void R_LoadImage( const char *shortname, byte **pic, int *width, int *height, int *mipcount, GLenum *format ) {
int bytedepth;
char name[MAX_QPATH];
*pic = NULL;
*width = 0;
*height = 0;
//handle external LMs
if (shortname[0] == '$') {
Q_strncpyz( name, shortname+1, sizeof( name ) );
} else {
Q_strncpyz( name, shortname, sizeof( name ) );
}
*format = GL_RGBA;
*mipcount = 1;
COM_StripExtension(name,name);
COM_DefaultExtension(name, sizeof(name), ".tga");
LoadTGA( name, pic, width, height );
if (*pic)
{
int j = (*width) * (*height) * 4;
byte *buf = *pic;
byte swap;
for (int i = 0 ; i < j ; i+=4 ) {
swap = buf[i];
buf[i] = buf[i+2];
buf[i+2] = swap;
}
return;
}
COM_StripExtension(name,name);
COM_DefaultExtension(name, sizeof(name), ".png");
//No .tga existed, try .png
LoadPNG32( name, pic, width, height, &bytedepth );
if (*pic)
{
return;
}
// No .png either, fall back to .dds
COM_StripExtension(name,name);
COM_DefaultExtension(name, sizeof(name), ".dds");
LoadDDS( name, pic, width, height, mipcount, format );
return;
}
void R_LoadDataImage( const char *name, byte **pic, int *width, int *height)
{
int len;
char work[MAX_QPATH];
*pic = NULL;
*width = 0;
*height = 0;
len = strlen(name);
if(len >= MAX_QPATH)
{
return;
}
if (len < 5)
{
return;
}
// MD_PushTag(TAG_DATA_IMAGE_LOAD);
strcpy(work, name);
COM_DefaultExtension( work, sizeof( work ), ".png" );
LoadPNG8( work, pic, width, height );
if (!pic || !*pic)
{ //both png and jpeg failed, try targa
strcpy(work, name);
COM_DefaultExtension( work, sizeof( work ), ".tga" );
LoadTGA( work, pic, width, height );
}
if(*pic)
{
// MD_PopTag();
return;
}
// Dataimage loading failed
Com_Printf("Couldn't read %s -- dataimage load failed\n", name);
// MD_PopTag();
}
void R_InvertImage(byte *data, int width, int height, int depth)
{
byte *newData;
byte *oldData;
byte *saveData;
int y, stride;
stride = width * depth;
oldData = data + ((height - 1) * stride);
newData = (byte *)Z_Malloc(height * stride, TAG_TEMP_WORKSPACE, qfalse );
saveData = newData;
for(y = 0; y < height; y++)
{
memcpy(newData, oldData, stride);
newData += stride;
oldData -= stride;
}
memcpy(data, saveData, height * stride);
Z_Free(saveData);
}
// Lanczos3 image resampling. Better than bicubic, based on sin(x)/x algorithm
#define LANCZOS3 (3.0f)
#define M_PI_OVER_3 (M_PI / 3.0f)
typedef struct
{
int pixel;
float weight;
} contrib_t;
typedef struct
{
int n; // number of contributors
contrib_t *p; // pointer to list of contributions
} contrib_list_t;
// sin(x)/x * sin(x/3)/(x/3)
float Lanczos3(float t)
{
if(!t)
{
return(1.0f);
}
t = (float)fabs(t);
if(t < 3.0f)
{
return(sinf(t * M_PI) * sinf(t * M_PI_OVER_3) / (t * M_PI * t * M_PI_OVER_3));
}
return(0.0f);
}
void R_Resample(byte *source, int swidth, int sheight, byte *dest, int dwidth, int dheight, int components)
{
int i, j, k, l, count, left, right, num;
int pixel;
byte *raster;
float center, weight, scale, width, height;
contrib_list_t *contributors;
const memtag_t usedTag = TAG_TEMP_WORKSPACE;
byte *work = (byte *)Z_Malloc(dwidth * sheight * components, usedTag, qfalse);
// Pre calculate filter contributions for rows
contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dwidth, usedTag, qfalse);
float xscale = (float)dwidth / (float)swidth;
if(xscale < 1.0f)
{
width = ceilf(LANCZOS3 / xscale);
scale = xscale;
}
else
{
width = LANCZOS3;
scale = 1.0f;
}
num = ((int)width * 2) + 1;
for(i = 0; i < dwidth; i++)
{
contributors[i].n = 0;
contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), usedTag, qfalse);
center = (float)i / xscale;
left = (int)ceilf(center - width);
right = (int)floorf(center + width);
for(j = left; j <= right; j++)
{
weight = Lanczos3((center - (float)j) * scale) * scale;
if(j < 0)
{
pixel = -j;
}
else if(j >= swidth)
{
pixel = (swidth - j) + swidth - 1;
}
else
{
pixel = j;
}
count = contributors[i].n++;
contributors[i].p[count].pixel = pixel;
contributors[i].p[count].weight = weight;
}
}
// Apply filters to zoom horizontally from source to work
for(k = 0; k < sheight; k++)
{
raster = source + (k * swidth * components);
for(i = 0; i < dwidth; i++)
{
for(l = 0; l < components; l++)
{
weight = 0.0f;
for(j = 0; j < contributors[i].n; j++)
{
weight += raster[(contributors[i].p[j].pixel * components) + l] * contributors[i].p[j].weight;
}
pixel = (byte)Com_Clamp(0.0f, 255.0f, weight);
work[(k * dwidth * components) + (i * components) + l] = pixel;
}
}
}
// Clean up
for(i = 0; i < dwidth; i++)
{
Z_Free(contributors[i].p);
}
Z_Free(contributors);
// Columns
contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dheight, usedTag, qfalse);
float yscale = (float)dheight / (float)sheight;
if(yscale < 1.0f)
{
height = ceilf(LANCZOS3 / yscale);
scale = yscale;
}
else
{
height = LANCZOS3;
scale = 1.0f;
}
num = ((int)height * 2) + 1;
for(i = 0; i < dheight; i++)
{
contributors[i].n = 0;
contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), usedTag, qfalse);
center = (float)i / yscale;
left = (int)ceilf(center - height);
right = (int)floorf(center + height);
for(j = left; j <= right; j++)
{
weight = Lanczos3((center - (float)j) * scale) * scale;
if(j < 0)
{
pixel = -j;
}
else if(j >= sheight)
{
pixel = (sheight - j) + sheight - 1;
}
else
{
pixel = j;
}
count = contributors[i].n++;
contributors[i].p[count].pixel = pixel;
contributors[i].p[count].weight = weight;
}
}
// Apply filter to columns
for(k = 0; k < dwidth; k++)
{
for(l = 0; l < components; l++)
{
for(i = 0; i < dheight; i++)
{
weight = 0.0f;
for(j = 0; j < contributors[i].n; j++)
{
weight += work[(contributors[i].p[j].pixel * dwidth * components) + (k * components) + l] * contributors[i].p[j].weight;
}
pixel = (byte)Com_Clamp(0.0f, 255.0f, weight);
dest[(i * dwidth * components) + (k * components) + l] = pixel;
}
}
}
// Clean up
for(i = 0; i < dheight; i++)
{
Z_Free(contributors[i].p);
}
Z_Free(contributors);
Z_Free(work);
// MD_PopTag();
}
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) {
image_t *image;
int width, height;
int mipcount;
byte *pic;
GLenum format;
if (!name) {
return NULL;
}
// need to do this here as well as in R_CreateImage, or R_FindImageFile_NoLoad() may complain about
// different clamp parms used...
//
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
glWrapClampMode = GL_CLAMP_TO_EDGE;
}
image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, glWrapClampMode );
if (image) {
return image;
}
//
// load the pic from disk
//
R_LoadImage( name, &pic, &width, &height, &mipcount, &format );
if ( !pic ) {
return NULL;
}
image = R_CreateImage( ( char * ) name, pic, width, height, format, mipcount, allowPicmip, glWrapClampMode );
Z_Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 64
static void R_CreateDlightImage( void )
{
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int xs, ys;
int b;
// The old code claims to have made a centered inverse-square falloff blob for dynamic lighting
// and it looked nasty, so, just doing something simpler that seems to have a much softer result
for ( x = 0; x < DLIGHT_SIZE; x++ )
{
for ( y = 0; y < DLIGHT_SIZE; y++ )
{
xs = (DLIGHT_SIZE * 0.5f - x);
ys = (DLIGHT_SIZE * 0.5f - y);
b = 255 - sqrt( (float)(xs * xs + ys * ys) ) * 9.0f; // try and generate numbers in the range of 255-0
// should be close, but clamp anyway
if ( b > 255 )
{
b = 255;
}
else if ( b < 0 )
{
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, GL_RGBA, qfalse, qfalse, GL_CLAMP);
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0/32) / (30.0/32);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float g;
float d;
float borderColor[4];
data = (byte*) Z_Malloc( FOG_S * FOG_T * 4, TAG_TEMP_WORKSPACE, qfalse );
g = 2.0;
// S is distance, T is depth
for (x=0 ; x<FOG_S ; x++) {
for (y=0 ; y<FOG_T ; y++) {
d = R_FogFactor( ( x + 0.5 ) / FOG_S, ( y + 0.5 ) / FOG_T );
data[(y*FOG_S+x)*4+0] =
data[(y*FOG_S+x)*4+1] =
data[(y*FOG_S+x)*4+2] = 255;
data[(y*FOG_S+x)*4+3] = 255*d;
}
}
// standard openGL clamping doesn't really do what we want -- it includes
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
// what we want.
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, GL_RGBA, qfalse, qfalse, GL_CLAMP);
Z_Free( data );
borderColor[0] = 1.0;
borderColor[1] = 1.0;
borderColor[2] = 1.0;
borderColor[3] = 1;
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
}
/*
==================
R_CreateDefaultImage
==================
*/
#define DEFAULT_SIZE 16
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image will be a box, to allow you to see the mapping coordinates
memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] =
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] =
data[x][0][3] = 255;
data[DEFAULT_SIZE-1][x][0] =
data[DEFAULT_SIZE-1][x][1] =
data[DEFAULT_SIZE-1][x][2] =
data[DEFAULT_SIZE-1][x][3] = 255;
data[x][DEFAULT_SIZE-1][0] =
data[x][DEFAULT_SIZE-1][1] =
data[x][DEFAULT_SIZE-1][2] =
data[x][DEFAULT_SIZE-1][3] = 255;
}
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qtrue, qfalse, GL_REPEAT);
}
/*
==================
R_CreateBuiltinImages
==================
*/
void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, GL_REPEAT);
//tr.screenImage = R_CreateImage("*screen", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, GL_REPEAT );
tr.screenImage = R_CreateImage("*screen", (byte *)data, 8, 8, GL_RGBA, 1, qfalse, GL_REPEAT );
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for (x=0 ; x<DEFAULT_SIZE ; x++) {
for (y=0 ; y<DEFAULT_SIZE ; y++) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, GL_REPEAT);
// scratchimage is usually used for cinematic drawing
for(x=0;x<32;x++) {
// scratchimage is usually used for cinematic drawing
tr.scratchImage[x] = R_CreateImage(va("*scratch%d",x), (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qfalse, qfalse, GL_CLAMP);
}
R_CreateFogImage();
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
int shift;
// setup the overbright lighting
tr.overbrightBits = r_overBrightBits->integer;
if ( !glConfig.deviceSupportsGamma ) {
tr.overbrightBits = 0; // need hardware gamma for overbright
}
// never overbright in windowed mode
if ( !glConfig.isFullscreen )
{
tr.overbrightBits = 0;
}
if ( tr.overbrightBits > 1 ) {
tr.overbrightBits = 1;
}
if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0 / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
if ( r_intensity->value < 1.0f ) {
Cvar_Set( "r_intensity", "1.0" );
}
if ( r_gamma->value < 0.5f ) {
Cvar_Set( "r_gamma", "0.5" );
} else if ( r_gamma->value > 3.0f ) {
Cvar_Set( "r_gamma", "3.0" );
}
g = r_gamma->value;
shift = tr.overbrightBits;
for ( i = 0; i < 256; i++ ) {
if ( g == 1 ) {
inf = i;
} else {
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
}
inf <<= shift;
if (inf < 0) {
inf = 0;
}
if (inf > 255) {
inf = 255;
}
s_gammatable[i] = inf;
}
for (i=0 ; i<256 ; i++) {
j = i * r_intensity->value;
if (j > 255) {
j = 255;
}
s_intensitytable[i] = j;
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
//memset(hashTable, 0, sizeof(hashTable)); // DO NOT DO THIS NOW (because of image cacheing) -ste.
if (!AllocatedImages)
{
AllocatedImages = new AllocatedImages_t;
}
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
}
/*
===============
R_DeleteTextures
===============
*/
// (only gets called during vid_restart now (and app exit), not during map load)
//
void R_DeleteTextures( void ) {
R_Images_Clear();
GL_ResetBinds();
}
/*
============================================================================
SKINS
============================================================================
*/
/*
==================
CommaParse
This is unfortunate, but the skin files aren't
compatable with our normal parsing rules.
==================
*/
static char *CommaParse( char **data_p ) {
int c = 0, len;
char *data;
static char com_token[MAX_TOKEN_CHARS];
data = *data_p;
len = 0;
com_token[0] = 0;
// make sure incoming data is valid
if ( !data ) {
*data_p = NULL;
return com_token;
}
while ( 1 ) {
// skip whitespace
while( (c = *data) <= ' ') {
if( !c ) {
break;
}
data++;
}
c = *data;
// skip double slash comments
if ( c == '/' && data[1] == '/' )
{
while (*data && *data != '\n')
data++;
}
// skip /* */ comments
else if ( c=='/' && data[1] == '*' )
{
while ( *data && ( *data != '*' || data[1] != '/' ) )
{
data++;
}
if ( *data )
{
data += 2;
}
}
else
{
break;
}
}
if ( c == 0 ) {
return "";
}
// handle quoted strings
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32 && c != ',' );
if (len == MAX_TOKEN_CHARS)
{
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
bool gServerSkinHack = false;
shader_t *R_FindServerShader( const char *name, const int *lightmapIndex, const byte *styles, qboolean mipRawImage );
/*
===============
RE_SplitSkins
input = skinname, possibly being a macro for three skins
return= true if three part skins found
output= qualified names to three skins if return is true, undefined if false
===============
*/
bool RE_SplitSkins(const char *INname, char *skinhead, char *skintorso, char *skinlower)
{ //INname= "models/players/jedi_tf/|head01_skin1|torso01|lower01";
if (strchr(INname, '|'))
{
char name[MAX_QPATH];
strcpy(name, INname);
char *p = strchr(name, '|');
*p=0;
p++;
//fill in the base path
strcpy (skinhead, name);
strcpy (skintorso, name);
strcpy (skinlower, name);
//now get the the individual files
//advance to second
char *p2 = strchr(p, '|');
assert(p2);
*p2=0;
p2++;
strcat (skinhead, p);
strcat (skinhead, ".skin");
//advance to third
p = strchr(p2, '|');
assert(p);
*p=0;
p++;
strcat (skintorso,p2);
strcat (skintorso, ".skin");
strcat (skinlower,p);
strcat (skinlower, ".skin");
return true;
}
return false;
}
qhandle_t RE_RegisterIndividualSkin( const char *name , qhandle_t hSkin);
/*
===============
RE_RegisterSkin
===============
*/
qhandle_t RE_RegisterSkin( const char *name) {
qhandle_t hSkin;
skin_t *skin;
if (!cls.cgameStarted && !cls.uiStarted)
//rww - added uiStarted exception because we want ghoul2 models in the menus.
return 1; // cope with Ghoul2's calling-the-renderer-before-its-even-started hackery, must be any NZ amount here to trigger configstring setting
if ( !name || !name[0] ) {
Com_Printf( "Empty name passed to RE_RegisterSkin\n" );
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
Com_Printf( "Skin name exceeds MAX_QPATH\n" );
return 0;
}
if (gServerSkinHack)
{ //This can happen on the server.
if (!tr.numSkins)
{ //skins haven't been init'd yet, should start off at 1.
R_InitSkins();
}
}
// see if the skin is already loaded
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
if( skin->numSurfaces == 0 ) {
return 0; // default skin
}
return(hSkin);
}
}
if ( tr.numSkins == MAX_SKINS ) {
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
// allocate a new skin
tr.numSkins++;
skin = (skin_t*) Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) ); //always make one so it won't search for it again
// make sure the render thread is stopped
R_SyncRenderThread();
// If not a .skin file, load as a single shader - then return
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
/* skin->numSurfaces = 1;
skin->surfaces[0] = (skinSurface_t *) Hunk_Alloc( sizeof(skin->surfaces[0]), qtrue );
skin->surfaces[0]->shader = R_FindShader( name, lightmapsNone, stylesDefault, qtrue );
return hSkin;
*/
}
char skinhead[MAX_QPATH]={0};
char skintorso[MAX_QPATH]={0};
char skinlower[MAX_QPATH]={0};
if ( RE_SplitSkins(name, (char*)&skinhead, (char*)&skintorso, (char*)&skinlower ) )
{//three part
hSkin = RE_RegisterIndividualSkin(skinhead, hSkin);
if (hSkin)
{
hSkin = RE_RegisterIndividualSkin(skintorso, hSkin);
if (hSkin)
{
hSkin = RE_RegisterIndividualSkin(skinlower, hSkin);
}
}
}
else
{//single skin
hSkin = RE_RegisterIndividualSkin(name, hSkin);
}
return(hSkin);
}
// given a name, go get the skin we want and return
qhandle_t RE_RegisterIndividualSkin( const char *name , qhandle_t hSkin)
{
skin_t *skin;
skinSurface_t *surf;
char *text, *text_p;
char *token;
char surfName[MAX_QPATH];
// load and parse the skin file
FS_ReadFile( name, (void **)&text );
if ( !text ) {
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) failed to load!\n", name );
return 0;
}
assert (tr.skins[hSkin]); //should already be setup, but might be an 3part append
skin = tr.skins[hSkin];
text_p = text;
while ( text_p && *text_p ) {
// get surface name
token = CommaParse( &text_p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] ) {
break;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if ( *text_p == ',' ) {
text_p++;
}
if ( !strncmp( token, "tag_", 4 ) ) { //these aren't in there, but just in case you load an id style one...
continue;
}
// parse the shader name
token = CommaParse( &text_p );
if ( !strcmp( &surfName[strlen(surfName)-4], "_off") )
{
if ( !strcmp( token ,"*off" ) )
{
continue; //don't need these double offs
}
surfName[strlen(surfName)-4] = 0; //remove the "_off"
}
if (sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) <= skin->numSurfaces)
{
assert( sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) > skin->numSurfaces );
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) more than %d surfaces!\n", name, sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) );
break;
}
surf = skin->surfaces[ skin->numSurfaces ] = (skinSurface_t *) Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
if (gServerSkinHack)
{
surf->shader = R_FindServerShader( token, lightmapsNone, stylesDefault, qtrue );
}
else
{
surf->shader = R_FindShader( token, lightmapsNone, stylesDefault, qtrue );
}
skin->numSurfaces++;
}
FS_FreeFile( text );
// never let a skin have 0 shaders
if ( skin->numSurfaces == 0 ) {
return 0; // use default skin
}
return hSkin;
}
/*
===============
RE_RegisterServerSkin
Mangled version of the above function to load .skin files on the server.
===============
*/
qhandle_t RE_RegisterServerSkin( const char *name ) {
qhandle_t r;
if (com_cl_running &&
com_cl_running->integer)
{ //If the client is running then we can go straight into the normal registerskin func
return RE_RegisterSkin(name);
}
gServerSkinHack = true;
r = RE_RegisterSkin(name);
gServerSkinHack = false;
return r;
}
/*
===============
R_InitSkins
===============
*/
void R_InitSkins( void ) {
skin_t *skin;
tr.numSkins = 1;
// make the default skin have all default shaders
skin = tr.skins[0] = (skin_t*) Hunk_Alloc( sizeof( skin_t ), h_low );
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
skin->numSurfaces = 1;
skin->surfaces[0] = (skinSurface_t *) Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
skin->surfaces[0]->shader = tr.defaultShader;
}
/*
===============
R_GetSkinByHandle
===============
*/
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
return tr.skins[0];
}
return tr.skins[ hSkin ];
}
/*
===============
R_SkinList_f
===============
*/
void R_SkinList_f (void) {
int i, j;
skin_t *skin;
Com_Printf ("------------------\n");
for ( i = 0 ; i < tr.numSkins ; i++ ) {
skin = tr.skins[i];
Com_Printf( "%3i:%s\n", i, skin->name );
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
Com_Printf( " %s = %s\n",
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
}
}
Com_Printf ("------------------\n");
}