mirror of
https://github.com/ioquake/jedi-academy.git
synced 2024-12-03 01:02:39 +00:00
1667 lines
37 KiB
C
1667 lines
37 KiB
C
// Copyright (C) 1999-2000 Id Software, Inc.
|
|
//
|
|
// q_math.c -- stateless support routines that are included in each code module
|
|
#include "q_shared.h"
|
|
|
|
|
|
vec3_t vec3_origin = {0,0,0};
|
|
vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
|
|
|
|
|
|
vec4_t colorBlack = {0, 0, 0, 1};
|
|
vec4_t colorRed = {1, 0, 0, 1};
|
|
vec4_t colorGreen = {0, 1, 0, 1};
|
|
vec4_t colorBlue = {0, 0, 1, 1};
|
|
vec4_t colorYellow = {1, 1, 0, 1};
|
|
vec4_t colorMagenta= {1, 0, 1, 1};
|
|
vec4_t colorCyan = {0, 1, 1, 1};
|
|
vec4_t colorWhite = {1, 1, 1, 1};
|
|
vec4_t colorLtGrey = {0.75, 0.75, 0.75, 1};
|
|
vec4_t colorMdGrey = {0.5, 0.5, 0.5, 1};
|
|
vec4_t colorDkGrey = {0.25, 0.25, 0.25, 1};
|
|
|
|
vec4_t colorLtBlue = {0.367f, 0.261f, 0.722f, 1};
|
|
vec4_t colorDkBlue = {0.199f, 0.0f, 0.398f, 1};
|
|
|
|
vec4_t g_color_table[8] =
|
|
{
|
|
{0.0, 0.0, 0.0, 1.0},
|
|
{1.0, 0.0, 0.0, 1.0},
|
|
{0.0, 1.0, 0.0, 1.0},
|
|
{1.0, 1.0, 0.0, 1.0},
|
|
{0.0, 0.0, 1.0, 1.0},
|
|
{0.0, 1.0, 1.0, 1.0},
|
|
{1.0, 0.0, 1.0, 1.0},
|
|
{1.0, 1.0, 1.0, 1.0},
|
|
};
|
|
|
|
|
|
vec3_t bytedirs[NUMVERTEXNORMALS] =
|
|
{
|
|
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f},
|
|
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f},
|
|
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f},
|
|
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f},
|
|
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f},
|
|
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f},
|
|
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f},
|
|
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f},
|
|
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f},
|
|
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f},
|
|
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f},
|
|
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f},
|
|
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f},
|
|
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f},
|
|
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f},
|
|
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f},
|
|
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f},
|
|
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f},
|
|
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f},
|
|
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f},
|
|
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f},
|
|
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f},
|
|
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f},
|
|
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f},
|
|
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f},
|
|
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f},
|
|
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f},
|
|
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f},
|
|
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f},
|
|
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f},
|
|
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f},
|
|
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f},
|
|
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f},
|
|
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f},
|
|
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f},
|
|
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f},
|
|
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f},
|
|
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f},
|
|
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f},
|
|
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f},
|
|
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f},
|
|
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f},
|
|
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f},
|
|
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f},
|
|
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f},
|
|
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f},
|
|
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f},
|
|
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f},
|
|
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f},
|
|
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f},
|
|
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f},
|
|
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f},
|
|
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f},
|
|
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f},
|
|
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f},
|
|
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f},
|
|
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f},
|
|
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f},
|
|
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f},
|
|
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f},
|
|
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f},
|
|
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f},
|
|
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f},
|
|
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f},
|
|
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f},
|
|
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f},
|
|
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f},
|
|
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f},
|
|
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f},
|
|
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f},
|
|
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f},
|
|
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f},
|
|
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f},
|
|
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f},
|
|
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f},
|
|
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f},
|
|
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f},
|
|
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f},
|
|
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f},
|
|
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f},
|
|
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
|
|
};
|
|
|
|
//==============================================================
|
|
|
|
int Q_rand( int *seed ) {
|
|
*seed = (69069 * *seed + 1);
|
|
return *seed;
|
|
}
|
|
|
|
float Q_random( int *seed ) {
|
|
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
|
|
}
|
|
|
|
float Q_crandom( int *seed ) {
|
|
return 2.0 * ( Q_random( seed ) - 0.5 );
|
|
}
|
|
|
|
#ifdef __LCC__
|
|
|
|
int VectorCompare( const vec3_t v1, const vec3_t v2 ) {
|
|
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
vec_t VectorLength( const vec3_t v ) {
|
|
return (vec_t)sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
|
}
|
|
|
|
vec_t VectorLengthSquared( const vec3_t v ) {
|
|
return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
|
}
|
|
|
|
vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract (p2, p1, v);
|
|
return VectorLength( v );
|
|
}
|
|
|
|
vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract (p2, p1, v);
|
|
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
}
|
|
|
|
// fast vector normalize routine that does not check to make sure
|
|
// that length != 0, nor does it return length, uses rsqrt approximation
|
|
void VectorNormalizeFast( vec3_t v )
|
|
{
|
|
float ilength;
|
|
|
|
ilength = Q_rsqrt( DotProduct( v, v ) );
|
|
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
void VectorInverse( vec3_t v ){
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
//i wrote this function in a console test app and it appeared faster
|
|
//in debug and release than the standard crossproduct asm generated
|
|
//by the compiler. however, when inlining the crossproduct function
|
|
//the compiler performs further optimizations and generally ends up
|
|
//being faster than this asm version. but feel free to try this one
|
|
//and see if you're heavily crossproducting in an area and looking
|
|
//for a way to optimize. -rww
|
|
#if 0
|
|
void CrossProductA (float *v1, float *v2, float *cross)
|
|
{
|
|
#if 1
|
|
static float scratch1, scratch2, scratch3, scratch4, scratch5, scratch6;
|
|
|
|
__asm mov eax,v1
|
|
__asm mov ecx,v2
|
|
__asm mov edx,cross
|
|
|
|
__asm fld dword ptr[eax+4]
|
|
__asm fmul dword ptr[ecx+8]
|
|
__asm fstp scratch1
|
|
|
|
__asm fld dword ptr[eax+8]
|
|
__asm fmul dword ptr[ecx+4]
|
|
__asm fstp scratch2
|
|
|
|
__asm fld dword ptr[eax+8]
|
|
__asm fmul dword ptr[ecx]
|
|
__asm fstp scratch3
|
|
|
|
__asm fld dword ptr[eax]
|
|
__asm fmul dword ptr[ecx+8]
|
|
__asm fstp scratch4
|
|
|
|
__asm fld dword ptr[eax]
|
|
__asm fmul dword ptr[ecx+4]
|
|
__asm fstp scratch5
|
|
|
|
__asm fld dword ptr[eax+4]
|
|
__asm fmul dword ptr[ecx]
|
|
__asm fstp scratch6
|
|
|
|
__asm fld scratch1
|
|
__asm fsub scratch2
|
|
__asm fstp dword ptr[edx]
|
|
|
|
__asm fld scratch3
|
|
__asm fsub scratch4
|
|
__asm fstp dword ptr[edx+4]
|
|
|
|
__asm fld scratch5
|
|
__asm fsub scratch6
|
|
__asm fstp dword ptr[edx+8]
|
|
#else //doesn't require use of statics, but not nearly as fast.
|
|
__asm mov eax,v1
|
|
__asm mov ecx,v2
|
|
__asm mov edx,cross
|
|
|
|
__asm fld dword ptr[eax+4]
|
|
__asm fmul dword ptr[ecx+8]
|
|
__asm fld dword ptr[eax+8]
|
|
__asm fmul dword ptr[ecx+4]
|
|
__asm fsubp st(1),st
|
|
__asm fstp dword ptr[edx]
|
|
|
|
__asm fld dword ptr[eax+8]
|
|
__asm fmul dword ptr[ecx]
|
|
__asm fld dword ptr[eax]
|
|
__asm fmul dword ptr[ecx+8]
|
|
__asm fsubp st(1),st
|
|
__asm fstp dword ptr[edx+4]
|
|
|
|
__asm fld dword ptr[eax]
|
|
__asm fmul dword ptr[ecx+4]
|
|
__asm fld dword ptr[eax+4]
|
|
__asm fmul dword ptr[ecx]
|
|
__asm fsubp st(1),st
|
|
__asm fstp dword ptr[edx+8]
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
#endif
|
|
|
|
//=======================================================
|
|
|
|
signed char ClampChar( int i ) {
|
|
if ( i < -128 ) {
|
|
return -128;
|
|
}
|
|
if ( i > 127 ) {
|
|
return 127;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
signed short ClampShort( int i ) {
|
|
if ( i < -32768 ) {
|
|
return -32768;
|
|
}
|
|
if ( i > 0x7fff ) {
|
|
return 0x7fff;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
// this isn't a real cheap function to call!
|
|
int DirToByte( vec3_t dir ) {
|
|
int i, best;
|
|
float d, bestd;
|
|
|
|
if ( !dir ) {
|
|
return 0;
|
|
}
|
|
|
|
bestd = 0;
|
|
best = 0;
|
|
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
|
|
{
|
|
d = DotProduct (dir, bytedirs[i]);
|
|
if (d > bestd)
|
|
{
|
|
bestd = d;
|
|
best = i;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
void ByteToDir( int b, vec3_t dir ) {
|
|
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
|
|
VectorCopy( vec3_origin, dir );
|
|
return;
|
|
}
|
|
VectorCopy (bytedirs[b], dir);
|
|
}
|
|
|
|
|
|
unsigned ColorBytes3 (float r, float g, float b) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255;
|
|
( (byte *)&i )[1] = g * 255;
|
|
( (byte *)&i )[2] = b * 255;
|
|
|
|
return i;
|
|
}
|
|
|
|
unsigned ColorBytes4 (float r, float g, float b, float a) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255;
|
|
( (byte *)&i )[1] = g * 255;
|
|
( (byte *)&i )[2] = b * 255;
|
|
( (byte *)&i )[3] = a * 255;
|
|
|
|
return i;
|
|
}
|
|
|
|
float NormalizeColor( const vec3_t in, vec3_t out ) {
|
|
float max;
|
|
|
|
max = in[0];
|
|
if ( in[1] > max ) {
|
|
max = in[1];
|
|
}
|
|
if ( in[2] > max ) {
|
|
max = in[2];
|
|
}
|
|
|
|
if ( !max ) {
|
|
VectorClear( out );
|
|
} else {
|
|
out[0] = in[0] / max;
|
|
out[1] = in[1] / max;
|
|
out[2] = in[2] / max;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
|
|
/*
|
|
=====================
|
|
PlaneFromPoints
|
|
|
|
Returns false if the triangle is degenrate.
|
|
The normal will point out of the clock for clockwise ordered points
|
|
=====================
|
|
*/
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotatePointAroundVector
|
|
|
|
This is not implemented very well...
|
|
===============
|
|
*/
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|
float degrees ) {
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
float rad;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
rad = DEG2RAD( degrees );
|
|
zrot[0][0] = cos( rad );
|
|
zrot[0][1] = sin( rad );
|
|
zrot[1][0] = -sin( rad );
|
|
zrot[1][1] = cos( rad );
|
|
|
|
MatrixMultiply( m, zrot, tmpmat );
|
|
MatrixMultiply( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ ) {
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotateAroundDirection
|
|
===============
|
|
*/
|
|
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
|
|
|
|
// create an arbitrary axis[1]
|
|
PerpendicularVector( axis[1], axis[0] );
|
|
|
|
// rotate it around axis[0] by yaw
|
|
if ( yaw ) {
|
|
vec3_t temp;
|
|
|
|
VectorCopy( axis[1], temp );
|
|
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
|
|
}
|
|
|
|
// cross to get axis[2]
|
|
CrossProduct( axis[0], axis[1], axis[2] );
|
|
}
|
|
|
|
|
|
|
|
void vectoangles( const vec3_t value1, vec3_t angles ) {
|
|
float forward;
|
|
float yaw, pitch;
|
|
|
|
if ( value1[1] == 0 && value1[0] == 0 ) {
|
|
yaw = 0;
|
|
if ( value1[2] > 0 ) {
|
|
pitch = 90;
|
|
}
|
|
else {
|
|
pitch = 270;
|
|
}
|
|
}
|
|
else {
|
|
if ( value1[0] ) {
|
|
yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
|
|
}
|
|
else if ( value1[1] > 0 ) {
|
|
yaw = 90;
|
|
}
|
|
else {
|
|
yaw = 270;
|
|
}
|
|
if ( yaw < 0 ) {
|
|
yaw += 360;
|
|
}
|
|
|
|
forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
|
|
pitch = ( atan2(value1[2], forward) * 180 / M_PI );
|
|
if ( pitch < 0 ) {
|
|
pitch += 360;
|
|
}
|
|
}
|
|
|
|
angles[PITCH] = -pitch;
|
|
angles[YAW] = yaw;
|
|
angles[ROLL] = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AnglesToAxis
|
|
=================
|
|
*/
|
|
void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) {
|
|
vec3_t right;
|
|
|
|
// angle vectors returns "right" instead of "y axis"
|
|
AngleVectors( angles, axis[0], right, axis[2] );
|
|
VectorSubtract( vec3_origin, right, axis[1] );
|
|
}
|
|
|
|
void AxisClear( vec3_t axis[3] ) {
|
|
axis[0][0] = 1;
|
|
axis[0][1] = 0;
|
|
axis[0][2] = 0;
|
|
axis[1][0] = 0;
|
|
axis[1][1] = 1;
|
|
axis[1][2] = 0;
|
|
axis[2][0] = 0;
|
|
axis[2][1] = 0;
|
|
axis[2][2] = 1;
|
|
}
|
|
|
|
void AxisCopy( vec3_t in[3], vec3_t out[3] ) {
|
|
VectorCopy( in[0], out[0] );
|
|
VectorCopy( in[1], out[1] );
|
|
VectorCopy( in[2], out[2] );
|
|
}
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = DotProduct( normal, normal );
|
|
#ifndef Q3_VM
|
|
assert( Q_fabs(inv_denom) != 0.0f ); // bk010122 - zero vectors get here
|
|
#endif
|
|
inv_denom = 1.0f / inv_denom;
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
================
|
|
MakeNormalVectors
|
|
|
|
Given a normalized forward vector, create two
|
|
other perpendicular vectors
|
|
================
|
|
*/
|
|
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
|
|
float d;
|
|
|
|
// this rotate and negate guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|
|
|
|
void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out )
|
|
{
|
|
out[0] = DotProduct( in, matrix[0] );
|
|
out[1] = DotProduct( in, matrix[1] );
|
|
out[2] = DotProduct( in, matrix[2] );
|
|
}
|
|
|
|
//============================================================================
|
|
|
|
#if !idppc
|
|
/*
|
|
** float q_rsqrt( float number )
|
|
*/
|
|
float Q_rsqrt( float number )
|
|
{
|
|
long i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
y = number;
|
|
i = * ( long * ) &y; // evil floating point bit level hacking
|
|
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
|
|
y = * ( float * ) &i;
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
|
|
#ifndef Q3_VM
|
|
#ifdef __linux__
|
|
assert( !isnan(y) ); // bk010122 - FPE?
|
|
#endif
|
|
#endif
|
|
return y;
|
|
}
|
|
|
|
float Q_fabs( float f ) {
|
|
int tmp = * ( int * ) &f;
|
|
tmp &= 0x7FFFFFFF;
|
|
return * ( float * ) &tmp;
|
|
}
|
|
#endif
|
|
|
|
//============================================================
|
|
|
|
/*
|
|
===============
|
|
LerpAngle
|
|
|
|
===============
|
|
*/
|
|
float LerpAngle (float from, float to, float frac) {
|
|
float a;
|
|
|
|
if ( to - from > 180 ) {
|
|
to -= 360;
|
|
}
|
|
if ( to - from < -180 ) {
|
|
to += 360;
|
|
}
|
|
a = from + frac * (to - from);
|
|
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleSubtract
|
|
|
|
Always returns a value from -180 to 180
|
|
=================
|
|
*/
|
|
float AngleSubtract( float a1, float a2 ) {
|
|
float a;
|
|
|
|
a = a1 - a2;
|
|
a=fmod(a,360);//chop it down quickly, then level it out
|
|
while ( a > 180 ) {
|
|
a -= 360;
|
|
}
|
|
while ( a < -180 ) {
|
|
a += 360;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) {
|
|
v3[0] = AngleSubtract( v1[0], v2[0] );
|
|
v3[1] = AngleSubtract( v1[1], v2[1] );
|
|
v3[2] = AngleSubtract( v1[2], v2[2] );
|
|
}
|
|
|
|
|
|
float AngleMod(float a) {
|
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize360
|
|
|
|
returns angle normalized to the range [0 <= angle < 360]
|
|
=================
|
|
*/
|
|
float AngleNormalize360 ( float angle ) {
|
|
return (360.0 / 65536) * ((int)(angle * (65536 / 360.0)) & 65535);
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize180
|
|
|
|
returns angle normalized to the range [-180 < angle <= 180]
|
|
=================
|
|
*/
|
|
float AngleNormalize180 ( float angle ) {
|
|
angle = AngleNormalize360( angle );
|
|
if ( angle > 180.0 ) {
|
|
angle -= 360.0;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleDelta
|
|
|
|
returns the normalized delta from angle1 to angle2
|
|
=================
|
|
*/
|
|
float AngleDelta ( float angle1, float angle2 ) {
|
|
return AngleNormalize180( angle1 - angle2 );
|
|
}
|
|
|
|
|
|
//============================================================
|
|
|
|
|
|
/*
|
|
=================
|
|
SetPlaneSignbits
|
|
=================
|
|
*/
|
|
void SetPlaneSignbits (cplane_t *out) {
|
|
int bits, j;
|
|
|
|
// for fast box on planeside test
|
|
bits = 0;
|
|
for (j=0 ; j<3 ; j++) {
|
|
if (out->normal[j] < 0) {
|
|
bits |= 1<<j;
|
|
}
|
|
}
|
|
out->signbits = bits;
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
|
|
// this is the slow, general version
|
|
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
int i;
|
|
float dist1, dist2;
|
|
int sides;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (p->normal[i] < 0)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
|
|
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0)
|
|
sides = 1;
|
|
if (dist2 < 0)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
|
|
==================
|
|
*/
|
|
#ifndef _MSC_VER
|
|
|
|
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
default:
|
|
dist1 = dist2 = 0; // shut up compiler
|
|
break;
|
|
}
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
#else
|
|
#pragma warning( disable: 4035 )
|
|
|
|
__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
static int bops_initialized;
|
|
static int Ljmptab[8];
|
|
|
|
__asm {
|
|
|
|
push ebx
|
|
|
|
cmp bops_initialized, 1
|
|
je initialized
|
|
mov bops_initialized, 1
|
|
|
|
mov Ljmptab[0*4], offset Lcase0
|
|
mov Ljmptab[1*4], offset Lcase1
|
|
mov Ljmptab[2*4], offset Lcase2
|
|
mov Ljmptab[3*4], offset Lcase3
|
|
mov Ljmptab[4*4], offset Lcase4
|
|
mov Ljmptab[5*4], offset Lcase5
|
|
mov Ljmptab[6*4], offset Lcase6
|
|
mov Ljmptab[7*4], offset Lcase7
|
|
|
|
initialized:
|
|
|
|
mov edx,dword ptr[4+12+esp]
|
|
mov ecx,dword ptr[4+4+esp]
|
|
xor eax,eax
|
|
mov ebx,dword ptr[4+8+esp]
|
|
mov al,byte ptr[17+edx]
|
|
cmp al,8
|
|
jge Lerror
|
|
fld dword ptr[0+edx]
|
|
fld st(0)
|
|
jmp dword ptr[Ljmptab+eax*4]
|
|
Lcase0:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase1:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase2:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase3:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase4:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase5:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase6:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase7:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
LSetSides:
|
|
faddp st(2),st(0)
|
|
fcomp dword ptr[12+edx]
|
|
xor ecx,ecx
|
|
fnstsw ax
|
|
fcomp dword ptr[12+edx]
|
|
and ah,1
|
|
xor ah,1
|
|
add cl,ah
|
|
fnstsw ax
|
|
and ah,1
|
|
add ah,ah
|
|
add cl,ah
|
|
pop ebx
|
|
mov eax,ecx
|
|
ret
|
|
Lerror:
|
|
int 3
|
|
}
|
|
}
|
|
#pragma warning( default: 4035 )
|
|
|
|
#endif
|
|
|
|
/*
|
|
=================
|
|
RadiusFromBounds
|
|
=================
|
|
*/
|
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
|
|
int i;
|
|
vec3_t corner;
|
|
float a, b;
|
|
|
|
for (i=0 ; i<3 ; i++) {
|
|
a = fabs( mins[i] );
|
|
b = fabs( maxs[i] );
|
|
corner[i] = a > b ? a : b;
|
|
}
|
|
|
|
return VectorLength (corner);
|
|
}
|
|
|
|
|
|
void ClearBounds( vec3_t mins, vec3_t maxs ) {
|
|
mins[0] = mins[1] = mins[2] = 99999;
|
|
maxs[0] = maxs[1] = maxs[2] = -99999;
|
|
}
|
|
|
|
vec_t DistanceHorizontal( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract( p2, p1, v );
|
|
return sqrt( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component
|
|
}
|
|
|
|
vec_t DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract( p2, p1, v );
|
|
return v[0]*v[0] + v[1]*v[1]; //Leave off the z component
|
|
}
|
|
|
|
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
|
|
if ( v[0] < mins[0] ) {
|
|
mins[0] = v[0];
|
|
}
|
|
if ( v[0] > maxs[0]) {
|
|
maxs[0] = v[0];
|
|
}
|
|
|
|
if ( v[1] < mins[1] ) {
|
|
mins[1] = v[1];
|
|
}
|
|
if ( v[1] > maxs[1]) {
|
|
maxs[1] = v[1];
|
|
}
|
|
|
|
if ( v[2] < mins[2] ) {
|
|
mins[2] = v[2];
|
|
}
|
|
if ( v[2] > maxs[2]) {
|
|
maxs[2] = v[2];
|
|
}
|
|
}
|
|
|
|
|
|
vec_t VectorNormalize( vec3_t v ) {
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length);
|
|
|
|
if ( length ) {
|
|
ilength = 1/length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
|
|
float length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length);
|
|
|
|
if (length)
|
|
{
|
|
#ifndef Q3_VM // bk0101022 - FPE related
|
|
// assert( ((Q_fabs(v[0])!=0.0f) || (Q_fabs(v[1])!=0.0f) || (Q_fabs(v[2])!=0.0f)) );
|
|
#endif
|
|
ilength = 1/length;
|
|
out[0] = v[0]*ilength;
|
|
out[1] = v[1]*ilength;
|
|
out[2] = v[2]*ilength;
|
|
} else {
|
|
#ifndef Q3_VM // bk0101022 - FPE related
|
|
// assert( ((Q_fabs(v[0])==0.0f) && (Q_fabs(v[1])==0.0f) && (Q_fabs(v[2])==0.0f)) );
|
|
#endif
|
|
VectorClear( out );
|
|
}
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
|
|
vecc[0] = veca[0] + scale*vecb[0];
|
|
vecc[1] = veca[1] + scale*vecb[1];
|
|
vecc[2] = veca[2] + scale*vecb[2];
|
|
}
|
|
|
|
|
|
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
|
|
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
|
|
void _VectorCopy( const vec3_t in, vec3_t out ) {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
}
|
|
|
|
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
out[3] = in[3]*scale;
|
|
}
|
|
|
|
|
|
int Q_log2( int val ) {
|
|
int answer;
|
|
|
|
answer = 0;
|
|
while ( ( val>>=1 ) != 0 ) {
|
|
answer++;
|
|
}
|
|
return answer;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
=================
|
|
PlaneTypeForNormal
|
|
=================
|
|
*/
|
|
/*
|
|
int PlaneTypeForNormal (vec3_t normal) {
|
|
if ( normal[0] == 1.0 )
|
|
return PLANE_X;
|
|
if ( normal[1] == 1.0 )
|
|
return PLANE_Y;
|
|
if ( normal[2] == 1.0 )
|
|
return PLANE_Z;
|
|
|
|
return PLANE_NON_AXIAL;
|
|
}
|
|
*/
|
|
|
|
|
|
/*
|
|
================
|
|
MatrixMultiply
|
|
================
|
|
*/
|
|
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
|
|
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
|
|
float angle;
|
|
static float sr, sp, sy, cr, cp, cy;
|
|
// static to help MS compiler fp bugs
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360);
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
|
right[2] = -1*sr*cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = (cr*sp*cy+-sr*-sy);
|
|
up[1] = (cr*sp*sy+-sr*cy);
|
|
up[2] = cr*cp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
/*
|
|
** NormalToLatLong
|
|
**
|
|
** We use two byte encoded normals in some space critical applications.
|
|
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
|
|
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
|
|
**
|
|
*/
|
|
//rwwRMG - added
|
|
void NormalToLatLong( const vec3_t normal, byte bytes[2] )
|
|
{
|
|
// check for singularities
|
|
if (!normal[0] && !normal[1])
|
|
{
|
|
if ( normal[2] > 0.0f )
|
|
{
|
|
bytes[0] = 0;
|
|
bytes[1] = 0; // lat = 0, long = 0
|
|
}
|
|
else
|
|
{
|
|
bytes[0] = 128;
|
|
bytes[1] = 0; // lat = 0, long = 128
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int a, b;
|
|
|
|
a = (int)(RAD2DEG( (vec_t)atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ));
|
|
a &= 0xff;
|
|
|
|
b = (int)(RAD2DEG( (vec_t)acos( normal[2] ) ) * ( 255.0f / 360.0f ));
|
|
b &= 0xff;
|
|
|
|
bytes[0] = b; // longitude
|
|
bytes[1] = a; // lattitude
|
|
}
|
|
}
|
|
|
|
// This is the VC libc version of rand() without multiple seeds per thread or 12 levels
|
|
// of subroutine calls.
|
|
// Both calls have been designed to minimise the inherent number of float <--> int
|
|
// conversions and the additional math required to get the desired value.
|
|
// eg the typical tint = (rand() * 255) / 32768
|
|
// becomes tint = irand(0, 255)
|
|
|
|
static unsigned long holdrand = 0x89abcdef;
|
|
|
|
void Rand_Init(int seed)
|
|
{
|
|
holdrand = seed;
|
|
}
|
|
|
|
// Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max)
|
|
|
|
float flrand(float min, float max)
|
|
{
|
|
float result;
|
|
|
|
holdrand = (holdrand * 214013L) + 2531011L;
|
|
result = (float)(holdrand >> 17); // 0 - 32767 range
|
|
result = ((result * (max - min)) / 32768.0F) + min;
|
|
|
|
return(result);
|
|
}
|
|
float Q_flrand(float min, float max)
|
|
{
|
|
return flrand(min,max);
|
|
}
|
|
|
|
// Returns an integer min <= x <= max (ie inclusive)
|
|
|
|
int irand(int min, int max)
|
|
{
|
|
int result;
|
|
|
|
assert((max - min) < 32768);
|
|
|
|
max++;
|
|
holdrand = (holdrand * 214013L) + 2531011L;
|
|
result = holdrand >> 17;
|
|
result = ((result * (max - min)) >> 15) + min;
|
|
return(result);
|
|
}
|
|
|
|
int Q_irand(int value1, int value2)
|
|
{
|
|
return irand(value1, value2);
|
|
}
|
|
|
|
float Q_powf ( float x, int y )
|
|
{
|
|
float r = x;
|
|
for ( y--; y>0; y-- )
|
|
r = r * r;
|
|
return r;
|
|
}
|
|
|
|
#ifdef Q3_VM
|
|
//rwwRMG - needed for HandleEntityAdjustment
|
|
double fmod( double x, double y )
|
|
{
|
|
int result;
|
|
|
|
if (y == 0.0)
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
result = x / y;
|
|
|
|
return x - (result * y);
|
|
}
|
|
|
|
#endif // Q3_VM
|
|
|
|
/*
|
|
-------------------------
|
|
DotProductNormalize
|
|
-------------------------
|
|
*/
|
|
|
|
float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 )
|
|
{
|
|
vec3_t v1, v2;
|
|
|
|
VectorNormalize2( inVec1, v1 );
|
|
VectorNormalize2( inVec2, v2 );
|
|
|
|
return DotProduct(v1, v2);
|
|
}
|
|
|
|
/*
|
|
-------------------------
|
|
G_FindClosestPointOnLineSegment
|
|
-------------------------
|
|
*/
|
|
|
|
qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result )
|
|
{
|
|
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From;
|
|
float distEnd2From, distEnd2Result, theta, cos_theta, dot;
|
|
|
|
//Find the perpendicular vector to vec from start to end
|
|
VectorSubtract( from, start, vecStart2From);
|
|
VectorSubtract( end, start, vecStart2End);
|
|
|
|
dot = DotProductNormalize( vecStart2From, vecStart2End );
|
|
|
|
if ( dot <= 0 )
|
|
{
|
|
//The perpendicular would be beyond or through the start point
|
|
VectorCopy( start, result );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{
|
|
//parallel, closer of 2 points will be the target
|
|
if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) )
|
|
{
|
|
VectorCopy( from, result );
|
|
}
|
|
else
|
|
{
|
|
VectorCopy( end, result );
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
//Try other end
|
|
VectorSubtract( from, end, vecEnd2From);
|
|
VectorSubtract( start, end, vecEnd2Start);
|
|
|
|
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
|
|
|
|
if ( dot <= 0 )
|
|
{//The perpendicular would be beyond or through the start point
|
|
VectorCopy( end, result );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{//parallel, closer of 2 points will be the target
|
|
if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start )))
|
|
{
|
|
VectorCopy( from, result );
|
|
}
|
|
else
|
|
{
|
|
VectorCopy( end, result );
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
// /|
|
|
// c / |
|
|
// / |a
|
|
// theta /)__|
|
|
// b
|
|
//cos(theta) = b / c
|
|
//solve for b
|
|
//b = cos(theta) * c
|
|
|
|
//angle between vecs end2from and end2start, should be between 0 and 90
|
|
theta = 90 * (1 - dot);//theta
|
|
|
|
//Get length of side from End2Result using sine of theta
|
|
distEnd2From = VectorLength( vecEnd2From );//c
|
|
cos_theta = cos(DEG2RAD(theta));//cos(theta)
|
|
distEnd2Result = cos_theta * distEnd2From;//b
|
|
|
|
//Extrapolate to find result
|
|
VectorNormalize( vecEnd2Start );
|
|
VectorMA( end, distEnd2Result, vecEnd2Start, result );
|
|
|
|
//perpendicular intersection is between the 2 endpoints
|
|
return qtrue;
|
|
}
|
|
|
|
float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from )
|
|
{
|
|
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection;
|
|
float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta, dot;
|
|
|
|
//Find the perpendicular vector to vec from start to end
|
|
VectorSubtract( from, start, vecStart2From);
|
|
VectorSubtract( end, start, vecStart2End);
|
|
VectorSubtract( from, end, vecEnd2From);
|
|
VectorSubtract( start, end, vecEnd2Start);
|
|
|
|
dot = DotProductNormalize( vecStart2From, vecStart2End );
|
|
|
|
distStart2From = Distance( start, from );
|
|
distEnd2From = Distance( end, from );
|
|
|
|
if ( dot <= 0 )
|
|
{
|
|
//The perpendicular would be beyond or through the start point
|
|
return distStart2From;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{
|
|
//parallel, closer of 2 points will be the target
|
|
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
|
|
}
|
|
|
|
//Try other end
|
|
|
|
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
|
|
|
|
if ( dot <= 0 )
|
|
{//The perpendicular would be beyond or through the end point
|
|
return distEnd2From;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{//parallel, closer of 2 points will be the target
|
|
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
|
|
}
|
|
|
|
// /|
|
|
// c / |
|
|
// / |a
|
|
// theta /)__|
|
|
// b
|
|
//cos(theta) = b / c
|
|
//solve for b
|
|
//b = cos(theta) * c
|
|
|
|
//angle between vecs end2from and end2start, should be between 0 and 90
|
|
theta = 90 * (1 - dot);//theta
|
|
|
|
//Get length of side from End2Result using sine of theta
|
|
cos_theta = cos(DEG2RAD(theta));//cos(theta)
|
|
distEnd2Result = cos_theta * distEnd2From;//b
|
|
|
|
//Extrapolate to find result
|
|
VectorNormalize( vecEnd2Start );
|
|
VectorMA( end, distEnd2Result, vecEnd2Start, intersection );
|
|
|
|
//perpendicular intersection is between the 2 endpoints, return dist to it from from
|
|
return Distance( intersection, from );
|
|
}
|