jedi-academy/code/Ratl/map_vs.h
2013-04-23 21:59:37 +10:00

1629 lines
45 KiB
C++

////////////////////////////////////////////////////////////////////////////////////////
// RAVEN STANDARD TEMPLATE LIBRARY
// (c) 2002 Activision
//
//
// Map
// ---
// This map is based on a red black tree, which guarentees balanced data, no mater what
// order elements are added. The map uses a memory pool for storage of node data.
//
//
////////////////////////////////////////////////////////////////////////////////////////
#if !defined(RATL_MAP_VS_INC)
#define RATL_MAP_VS_INC
////////////////////////////////////////////////////////////////////////////////////////
// Includes
////////////////////////////////////////////////////////////////////////////////////////
#if defined(RA_DEBUG_LINKING)
#pragma message("...including map_vs.h")
#endif
#if !defined(RATL_COMMON_INC)
#include "ratl_common.h"
#endif
#if !defined(RATL_POOL_VS_INC)
#include "pool_vs.h"
#endif
namespace ratl
{
// this is private to the set, but you have no access to it, soooo..
class tree_node
{
int mParent;
int mLeft;
int mRight;
public:
enum
{
RED_BIT = 0x40000000, // to save space we are putting the red bool in a high bit
// this is in the parent only
NULL_NODE = 0x3fffffff, // this must not have the red bit set
};
void init()
{
mLeft = NULL_NODE;
mRight = NULL_NODE;
mParent = NULL_NODE | RED_BIT;
}
int left() const
{
return mLeft;
}
int right() const
{
return mRight;
}
int parent() const
{
return mParent & (~RED_BIT);
}
bool red() const
{
return !!(mParent & RED_BIT);
}
void set_left(int l)
{
mLeft = l;
}
void set_right(int r)
{
mRight = r;
}
void set_parent(int p)
{
mParent &= RED_BIT;
mParent |= p;
}
void set_red(bool isRed)
{
if (isRed)
{
mParent |= RED_BIT;
}
else
{
mParent &= ~RED_BIT;
}
}
};
//fixme void *, comparison function pointer-ize this for code bloat.
template<class T, int IS_MULTI>
class tree_base
{
public:
typedef T TStorageTraits;
typedef typename T::TValue TTValue;
////////////////////////////////////////////////////////////////////////////////////
// Capacity Enum
////////////////////////////////////////////////////////////////////////////////////
enum
{
CAPACITY = T::CAPACITY,
};
private:
pool_base<TStorageTraits> mPool; // The Allocation Data Pool
int mRoot;
int mLastAdd;
void link_left(int node,int left)
{
T::node(mPool[node]).set_left(left);
if (left!=tree_node::NULL_NODE)
{
T::node(mPool[left]).set_parent(node);
}
}
void link_right(int node,int right)
{
T::node(mPool[node]).set_right(right);
if (right!=tree_node::NULL_NODE)
{
T::node(mPool[right]).set_parent(node);
}
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive find function - do not use externally
////////////////////////////////////////////////////////////////////////////////////
int find_internal(const TTValue &key, int at) const
{
// FAIL TO FIND?
//---------------
if (at==tree_node::NULL_NODE)
{
return tree_node::NULL_NODE;
}
// Should We Search Left?
//------------------------
if (key<mPool[at])
{
return find_internal(key, T::node(mPool[at]).left());
}
// Should We Search Right?
//------------------------
else if (mPool[at]<key)
{
return find_internal(key, T::node(mPool[at]).right());
}
// FOUND!
//--------
return at;
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive find function - do not use externally
////////////////////////////////////////////////////////////////////////////////////
int find_internal(const TTValue &key, int target, int at, int& parent) const
{
// FAIL TO FIND?
//---------------
if (at==tree_node::NULL_NODE)
{
parent = tree_node::NULL_NODE;
return tree_node::NULL_NODE;
}
// FOUND!
//--------
if (at==target)
{
if (at==mRoot)
{
parent = tree_node::NULL_NODE;
}
return at;
}
// Should We Search Left?
//------------------------
if (key<mPool[at])
{
parent = at;
return find_internal(key, target, T::node(mPool[at]).left(), parent);
}
parent = at;
return find_internal(key, target, T::node(mPool[at]).right(), parent);
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive insertion - do not use externally
////////////////////////////////////////////////////////////////////////////////////
int insert_internal(const TTValue &key, int &at)
{
// If At Is A NULL_NODE, We Have Found A Leaf.
//----------------------------------------------
if (at==tree_node::NULL_NODE)
{
if (mRoot==tree_node::NULL_NODE)
{
mRoot = mLastAdd;
}
return tree_node::NULL_NODE; // There Are No Excess Red Children (No Childeren At All, Actually)
}
int nxtChild; // The Child We Will Eventually Add Underneath
int altChild; // The "other" Child
bool nxtRotateLeft;
int excessRedChild; // If The Insert Results In An Excess Red Child, This Will Be It
// Choose Which Side To Add The New Node Under
//---------------------------------------------
if (key < mPool[at]) // The Key Classes Must Support A < Operator
{
int tmp=T::node(mPool[at]).left();
excessRedChild = insert_internal(key,tmp);
link_left(at,tmp);//T::node(mPool[at]).set_left(tmp);
if (tmp==tree_node::NULL_NODE)
{
link_left(at,mLastAdd);//T::node(mPool[at]).set_left(mLastAdd); // If mLeft Of The Current Node Is NULL, We Must Have Added DIRECTLY Below nAt
}
nxtChild = T::node(mPool[at]).left();
altChild = T::node(mPool[at]).right();
nxtRotateLeft = false;
}
else if (mPool[at] < key)
{
int tmp=T::node(mPool[at]).right();
excessRedChild = insert_internal(key,tmp);
link_right(at,tmp); // T::node(mPool[at]).set_right(tmp);
if (tmp==tree_node::NULL_NODE)
{
link_right(at,mLastAdd); // T::node(mPool[at]).set_right(mLastAdd); // If mRight Of The Current Node Is NULL, We Must Have Added DIRECTLY Below nAt
}
nxtChild = T::node(mPool[at]).right();
altChild = T::node(mPool[at]).left();
nxtRotateLeft = true;
}
// Exact Match
//-------------
else
{
// the node of interest is at
return tree_node::NULL_NODE;
}
// If The Add Resulted In An Excess Red Child, We Need To Change Colors And Rotate
//---------------------------------------------------------------------------------
if (excessRedChild!=tree_node::NULL_NODE)
{
// If Both Childeren Are Red, Just Switch And Be Done
//----------------------------------------------------
if (T::node(mPool[at]).right()!=tree_node::NULL_NODE &&
T::node(mPool[at]).left()!=tree_node::NULL_NODE &&
T::node(mPool[T::node(mPool[at]).right()]).red() &&
T::node(mPool[T::node(mPool[at]).left()]).red())
{
set_colors(T::node(mPool[at]), true, false);
}
else
{
int excessRedChildCompare =
(nxtRotateLeft)?(T::node(mPool[nxtChild]).right()):(T::node(mPool[nxtChild]).left());
if (excessRedChild==excessRedChildCompare)
{
// Single Rotation
//-----------------
rotate(at, nxtRotateLeft);
}
else
{
if (nxtRotateLeft)
{
int nxt=T::node(mPool[at]).right();
rotate(nxt, false);
link_right(at,nxt); // T::node(mPool[at]).set_right(nxt);
}
else
{
int nxt=T::node(mPool[at]).left();
rotate(nxt,true);
link_left(at,nxt); // T::node(mPool[at]).set_left(nxt);
}
rotate(at, nxtRotateLeft);
}
set_colors(T::node(mPool[at]), false, true);
}
}
if (T::node(mPool[at]).red())
{
if (T::node(mPool[at]).left()!=tree_node::NULL_NODE &&
T::node(mPool[T::node(mPool[at]).left()]).red())
{
return T::node(mPool[at]).left();
}
if (T::node(mPool[at]).right()!=tree_node::NULL_NODE &&
T::node(mPool[T::node(mPool[at]).right()]).red())
{
return T::node(mPool[at]).right();
}
}
return tree_node::NULL_NODE;
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive erase - do not use externally
////////////////////////////////////////////////////////////////////////////////////
bool erase_internal(const TTValue &key, int& at)
{
// If At Is A NULL_NODE, We Have Found A Leaf.
//---------------------------------------------
if (at==tree_node::NULL_NODE)
{
return true;
}
//==============================================================================
// Now The Question Is, Do We Need To Continue Searching?
//==============================================================================
// Recurse To The Left?
//----------------------
if (key < mPool[at])
{
int a=T::node(mPool[at]).left();
bool r=erase_internal(key, a);
link_left(at,a); // T::node(mPool[at]).set_left(a);
if (!r) // If It Was Not Red, We Need To Rebalance
{
return rebalance(at, true);
}
return true;
}
// Recurse To The Right?
//-----------------------
if (mPool[at] < key)
{
int a=T::node(mPool[at]).right();
bool r=erase_internal(key, a);
link_right(at,a); // T::node(mPool[at]).set_right(a);
if (!r) // If It Was Not Red, We Need To Rebalance
{
return rebalance(at, false);
}
return true;
}
//==============================================================================
// At This Point, We Must Have Discovered An Exact Match For Our Key
//==============================================================================
// Are There Any Open Childeren Slots?
//-------------------------------------
if (T::node(mPool[at]).left()==tree_node::NULL_NODE || T::node(mPool[at]).right()==tree_node::NULL_NODE)
{
bool atWasRed = T::node(mPool[at]).red();
int oldAt = at;
at = (T::node(mPool[at]).left()==tree_node::NULL_NODE)?(T::node(mPool[at]).right()):(T::node(mPool[at]).left()); // If Left Is Null, At Goes Right
// Actually Free It!
//-------------------
mPool.free(oldAt);
// If We Are Now At A Null Node, Just Return
//-------------------------------------------
if (at==tree_node::NULL_NODE)
{
return atWasRed;
}
// Otherwise, Mark The New Child As Red, And Return That Fact Up
//---------------------------------------------------------------
T::node(mPool[at]).set_red(false);
return true;
}
//==============================================================================
// There Are No Childeren To Link With, We Are In The Middle Of The Tree.
// We Need To Find An Open Leaf, Swap Data With That Leaf, and Then Go Find It
//==============================================================================
// Find A Successor Leaf
//-----------------------
int at_parent = T::node(mPool[at]).parent();
int successor = T::node(mPool[at]).right();
int parent_successor=-1;
while(T::node(mPool[successor]).left()!=tree_node::NULL_NODE)
{
parent_successor=successor;
successor = T::node(mPool[successor]).left();
}
int successor_right = T::node(mPool[successor]).right();
link_left(successor,T::node(mPool[at]).left());
bool red=T::node(mPool[successor]).red();
T::node(mPool[successor]).set_red(T::node(mPool[at]).red());
T::node(mPool[at]).set_red(red);
if (parent_successor!=-1)
{
link_right(successor,T::node(mPool[at]).right());
link_left(parent_successor,at);
}
else
{
link_right(successor,at);
}
if (at_parent!=tree_node::NULL_NODE)
{
if (T::node(mPool[at_parent]).left()==at)
{
//my parents left child
link_left(at_parent,successor);
}
else
{
assert(T::node(mPool[at_parent]).right()==at); // better be my parents right child then
link_right(at_parent,successor);
}
}
link_left(at,tree_node::NULL_NODE);
link_right(at,successor_right);
at=successor;
int a=T::node(mPool[at]).right();
bool r=erase_internal(key, a);
link_right(at,a); // T::node(mPool[at]).set_right(a);
// And Keep Going
//----------------
if (!r) // If It Was Not Red, We Need To Rebalance
{
return rebalance(at, false);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////////
// HELPER: Change the color of a node and children
////////////////////////////////////////////////////////////////////////////////////
void set_colors(tree_node& at, bool red, bool childRed)
{
at.set_red(red);
if (at.left()!=tree_node::NULL_NODE)
{
T::node(mPool[at.left()]).set_red(childRed);
}
if (at.right()!=tree_node::NULL_NODE)
{
T::node(mPool[at.right()]).set_red(childRed);
}
}
////////////////////////////////////////////////////////////////////////////////////
// HELPER: Rotate node located at (at) either left or right
////////////////////////////////////////////////////////////////////////////////////
void rotate(int& at, bool left)
{
int t;
if (left)
{
assert(T::node(mPool[at]).right()!=tree_node::NULL_NODE);
t = T::node(mPool[at]).right();
link_right(at,T::node(mPool[t]).left()); // T::node(mPool[at]).set_right(T::node(mPool[t]).left());
link_left(t,at); // T::node(mPool[t]).set_left(at);
at = t;
}
else
{
assert(T::node(mPool[at]).left()!=tree_node::NULL_NODE);
t = T::node(mPool[at]).left();
link_left(at,T::node(mPool[t]).right()); // T::node(mPool[at]).set_left(T::node(mPool[t]).right());
link_right(t,at); //T::node(mPool[t]).set_right(at);
at = t;
}
}
////////////////////////////////////////////////////////////////////////////////////
// HELPER: Localally rebalance the tree here
////////////////////////////////////////////////////////////////////////////////////
bool rebalance(int& at, bool left)
{
// Decide Which Child, Left Or Right?
//------------------------------------
int w = (left)?(T::node(mPool[at]).right()):(T::node(mPool[at]).left()); // w is the child of at
if (w==tree_node::NULL_NODE)
{
bool atWasRed = T::node(mPool[at]).red(); // Remember what mPool[at] WAS
T::node(mPool[at]).set_red(false); // Mark mPool[at] as BLACK
return atWasRed; // Return what it used to be
}
// Get A Reference To The Child W, And Record It's Children x And y
//------------------------------------------------------------------
tree_node& wAt = T::node(mPool[w]);
int x = (left)?(wAt.left()):(wAt.right());// x and y are the grand children of at
int y = (left)?(wAt.right()):(wAt.left());
// Is The Child Black?
//---------------------
if (!wAt.red())
{
// If Both X and Y are Empty, Or Both Are Red
//--------------------------------------------
if ((x==tree_node::NULL_NODE || !T::node(mPool[x]).red()) &&
(y==tree_node::NULL_NODE || !T::node(mPool[y]).red()))
{
bool atWasRed = T::node(mPool[at]).red(); // Remember what mPool[at] WAS
T::node(mPool[at]).set_red(false); // Mark mPool[at] as BLACK
wAt.set_red(true); // Mark The Child As RED
return atWasRed; // Return what it used to be
}
// If Y Is Valid
//---------------
if (y!=tree_node::NULL_NODE && T::node(mPool[y]).red())
{
wAt.set_red(T::node(mPool[at]).red());
rotate(at, left);
T::node(mPool[T::node(mPool[at]).left()]).set_red(false);
T::node(mPool[T::node(mPool[at]).right()]).set_red(false);
return true;
}
// X Must Be Valid
//-----------------
T::node(mPool[x]).set_red(T::node(mPool[at]).red());
T::node(mPool[at]).set_red(false);
if (left)
{
int r=T::node(mPool[at]).right();
rotate(r,false);
link_right(at,r); // T::node(mPool[at]).set_right(r);
}
else
{
int r=T::node(mPool[at]).left();
rotate(r,true);
link_left(at,r); // T::node(mPool[at]).set_left(r);
}
rotate(at, left);
return true;
}
// The Child Must Have Been Red
//------------------------------
wAt.set_red(T::node(mPool[at]).red()); // Switch Child Color
T::node(mPool[at]).set_red(true);
rotate(at, left); // Rotate At
// Select The Next Rebalance Child And Recurse
//----------------------------------------------
if (left)
{
int r=T::node(mPool[at]).left();
rebalance(r,true);
link_left(at,r); // T::node(mPool[at]).set_left(r);
}
else
{
int r=T::node(mPool[at]).right();
rebalance(r,false);
link_right(at,r); //T::node(mPool[at]).set_right(r);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive front function - do not use externally
////////////////////////////////////////////////////////////////////////////////////
int front(int at) const
{
if (at!=tree_node::NULL_NODE &&
T::node(mPool[at]).left()!=tree_node::NULL_NODE)
{
return front(T::node(mPool[at]).left());
}
return at;
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive back function - do not use externally
////////////////////////////////////////////////////////////////////////////////////
int back(int at) const
{
if (at!=tree_node::NULL_NODE && T::node(mPool[at]).right()!=tree_node::NULL_NODE)
{
return back(T::node(mPool[at]).right());
}
return at;
}
protected:
int front() const
{
return front(mRoot);
}
int back() const
{
return back(mRoot);
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive next function - do not use externally
////////////////////////////////////////////////////////////////////////////////////
int next(int at) const
{
assert(at!=tree_node::NULL_NODE);
const TTValue& kAt = mPool[at];
const tree_node& nAt = T::node(kAt);
if (nAt.right()!=tree_node::NULL_NODE)
{
return front(nAt.right());
}
int child = at;
int parent = tree_node::NULL_NODE;
find_internal(kAt, at, mRoot, parent);
while(parent!=tree_node::NULL_NODE && (child==T::node(mPool[parent]).right()))
{
child = parent;
find_internal(mPool[parent], parent, mRoot, parent);
}
return parent;
}
////////////////////////////////////////////////////////////////////////////////////
// This is the map internal recursive previous function - do not use externally
////////////////////////////////////////////////////////////////////////////////////
int previous(int at) const
{
assert(at!=tree_node::NULL_NODE);
const TTValue& kAt = mPool[at];
const tree_node& nAt = T::node(mPool[at]);
if (kAt.left()!=tree_node::NULL_NODE)
{
return back(kAt.left());
}
int child = at;
int parent = tree_node::NULL_NODE;
find_internal(nAt, at, mRoot, parent);
while(parent!=tree_node::NULL_NODE && (child==T::node(mPool[parent]).left()))
{
child = parent;
find_internal(mPool[parent], parent, mRoot, parent);
}
return parent;
}
public:
////////////////////////////////////////////////////////////////////////////////////
// Constructor
////////////////////////////////////////////////////////////////////////////////////
tree_base() : mRoot(tree_node::NULL_NODE), mLastAdd(-1)
{
}
////////////////////////////////////////////////////////////////////////////////////
// How Many Objects Are In This Map
////////////////////////////////////////////////////////////////////////////////////
int size() const
{
return (mPool.size());
}
////////////////////////////////////////////////////////////////////////////////////
// Are There Any Objects In This Map?
////////////////////////////////////////////////////////////////////////////////////
bool empty() const
{
return (mPool.empty());
}
////////////////////////////////////////////////////////////////////////////////////
// Is This Map Filled?
////////////////////////////////////////////////////////////////////////////////////
bool full() const
{
return (mPool.full());
}
////////////////////////////////////////////////////////////////////////////////////
// Clear All Data From The Map
////////////////////////////////////////////////////////////////////////////////////
void clear()
{
mRoot = tree_node::NULL_NODE;
mPool.clear();
}
////////////////////////////////////////////////////////////////////////////////////
// Adds Element Value At Location Key - O(log n)
////////////////////////////////////////////////////////////////////////////////////
void alloc_key(const TTValue &key)
{
//fixme handle duplicates more sensibly?
assert(!full());
mLastAdd = mPool.alloc(key); // Grab A New One
T::node(mPool[mLastAdd]).init(); // Initialize Our Data And Color
}
////////////////////////////////////////////////////////////////////////////////////
// Allocs an item, when filled, call insert_alloced
////////////////////////////////////////////////////////////////////////////////////
TTValue & alloc_key()
{
assert(!full());
mLastAdd = mPool.alloc(); // Grab A New One
T::node(mPool[mLastAdd]).init(); // Initialize Our Data And Color
return mPool[mLastAdd];
}
////////////////////////////////////////////////////////////////////////////////////
// Allocs an item (raw), when constucted, call insert_alloced
////////////////////////////////////////////////////////////////////////////////////
TRatlNew *alloc_key_raw()
{
assert(!full());
TRatlNew *ret=mPool.alloc_raw(); // Grab A New One
mLastAdd = mPool.pointer_to_index(ret);
T::node(mPool[mLastAdd]).init(); // Initialize Our Data And Color
return ret;
}
template<class CAST_TO>
CAST_TO *verify_alloc_key(CAST_TO *p) const
{
return mPool.verify_alloc(p);
}
void insert_alloced_key()
{
assert(mLastAdd>=0&&mLastAdd<CAPACITY);
assert(!IS_MULTI || find_index(mPool[mLastAdd])!=tree_node::NULL_NODE); //fixme handle duplicates more sensibly?
insert_internal(mPool[mLastAdd],mRoot);
assert(mRoot!=tree_node::NULL_NODE);
T::node(mPool[mRoot]).set_red(false);
T::node(mPool[mRoot]).set_parent(tree_node::NULL_NODE);
}
int index_of_alloced_key() const
{
assert(mLastAdd>=0&&mLastAdd<CAPACITY);
return mLastAdd;
}
////////////////////////////////////////////////////////////////////////////////////
// Removes The Element Pointed To At (it) And Decrements (it) - O((log n)^2)
////////////////////////////////////////////////////////////////////////////////////
void erase_index(int i)
{
assert(i>=0&&i<CAPACITY);
assert(mRoot!=tree_node::NULL_NODE);
//fixme this is lame to have to look by key to erase
erase_internal(mPool[i],mRoot);
if (mRoot!=tree_node::NULL_NODE)
{
T::node(mPool[mRoot]).set_red(false);
T::node(mPool[mRoot]).set_parent(tree_node::NULL_NODE);
}
}
////////////////////////////////////////////////////////////////////////////////////
// Seach For A Given Key. Will Return -1 if Failed - O(log n)
////////////////////////////////////////////////////////////////////////////////////
int find_index(const TTValue &key) const
{
return find_internal(key, mRoot);
}
const TTValue &index_to_key(int i) const
{
assert(i>=0&&i<CAPACITY);
return mPool[i];
}
//fixme lower bound, upper bound, equal range
};
template<class T,int IS_MULTI>
class set_base : public tree_base<T,IS_MULTI>
{
public:
typedef T TStorageTraits;
typedef typename T::TValue TTValue;
////////////////////////////////////////////////////////////////////////////////////
// Capacity Enum
////////////////////////////////////////////////////////////////////////////////////
enum
{
CAPACITY = T::CAPACITY
};
////////////////////////////////////////////////////////////////////////////////////
// Adds Element Value At Location Key - O(log n)
////////////////////////////////////////////////////////////////////////////////////
void insert(const TTValue &key)
{
assert(!IS_MULTI || find_index(key)==tree_node::NULL_NODE); //fixme handle duplicates more sensibly?
alloc_key(key);
this->insert_alloced_key();
}
////////////////////////////////////////////////////////////////////////////////////
// Allocs an item, when filled, call insert_alloced
////////////////////////////////////////////////////////////////////////////////////
TTValue & alloc()
{
return this->alloc_key();
}
////////////////////////////////////////////////////////////////////////////////////
// Allocs an item (raw), when constucted, call insert_alloced
////////////////////////////////////////////////////////////////////////////////////
TRatlNew *alloc_raw()
{
return this->alloc_key_raw();
}
template<class CAST_TO>
CAST_TO *verify_alloc(CAST_TO *p) const
{
return verify_alloc_key(p);
}
void insert_alloced()
{
this->insert_alloced_key();
}
////////////////////////////////////////////////////////////////////////////////////
// Removes The First Element With Key (key) - O(log n)
////////////////////////////////////////////////////////////////////////////////////
void erase(const TTValue &key)
{
//fixme this is a double search currently
int i=find_index(key);
if (i!=tree_node::NULL_NODE)
{
this->erase_index(i);
}
}
////////////////////////////////////////////////////////////////////////////////////
// Iterator
//
// A map is sorted in ascending order on the KEY type. ++ and -- are both
// O((log n)^2) operations
//
////////////////////////////////////////////////////////////////////////////////////
class iterator
{
friend class set_base<TStorageTraits,IS_MULTI>;
friend class const_iterator;
int mLoc;
set_base<TStorageTraits,IS_MULTI>* mOwner;
public:
iterator(set_base<TStorageTraits,IS_MULTI> *owner=0, int loc=tree_node::NULL_NODE) :
mOwner(owner),
mLoc(loc)
{
}
iterator(const iterator &o) :
mOwner(o.mOwner),
mLoc(o.mLoc)
{
}
void operator=(const iterator &o)
{
mOwner=o.mOwner;
mLoc=o.mLoc;
}
iterator operator++() //prefix
{
assert(mOwner);
mLoc=mOwner->next(mLoc);
return *this;
}
iterator operator++(int) //postfix
{
assert(mOwner);
iterator old(*this);
mLoc=mOwner->next(mLoc);
return old;
}
iterator operator--() //prefix
{
assert(mOwner);
mLoc=mOwner->previous(mLoc);
return *this;
}
iterator operator--(int) //postfix
{
assert(mOwner);
iterator old(*this);
mLoc=mOwner->previous(mLoc);
return old;
}
bool operator!=(const iterator p) const {return (mLoc!=p.mLoc || mOwner!=p.mOwner);}
bool operator==(const iterator p) const {return (mLoc==p.mLoc && mOwner==p.mOwner);}
const TTValue & operator*() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->index_to_key(mLoc);
}
const TTValue * operator->() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return &mOwner->index_to_key(mLoc);
}
};
class const_iterator
{
friend class set_base<TStorageTraits,IS_MULTI>;
int mLoc;
const set_base<TStorageTraits,IS_MULTI>* mOwner;
public:
const_iterator(const set_base<TStorageTraits,IS_MULTI> *owner=0, int loc=tree_node::NULL_NODE) :
mOwner(owner),
mLoc(loc)
{
}
const_iterator(const const_iterator &o) :
mOwner(o.mOwner),
mLoc(o.mLoc)
{
}
const_iterator(const iterator &o) :
mOwner(o.mOwner),
mLoc(o.mLoc)
{
}
void operator=(const const_iterator &o)
{
mOwner=o.mOwner;
mLoc=o.mLoc;
}
void operator=(const iterator &o)
{
mOwner=o.mOwner;
mLoc=o.mLoc;
}
const_iterator operator++() //prefix
{
assert(mOwner);
mLoc=mOwner->next(mLoc);
return *this;
}
const_iterator operator++(int) //postfix
{
assert(mOwner);
const_iterator old(*this);
mLoc=mOwner->next(mLoc);
return old;
}
const_iterator operator--() //prefix
{
assert(mOwner);
mLoc=mOwner->previous(mLoc);
return *this;
}
const_iterator operator--(int) //postfix
{
assert(mOwner);
const_iterator old(*this);
mLoc=mOwner->previous(mLoc);
return old;
}
bool operator!=(const const_iterator p) const {return (mLoc!=p.mLoc || mOwner!=p.mOwner);}
bool operator==(const const_iterator p) const {return (mLoc==p.mLoc && mOwner==p.mOwner);}
bool operator!=(const iterator p) const {return (mLoc!=p.mLoc || mOwner!=p.mOwner);}
bool operator==(const iterator p) const {return (mLoc==p.mLoc && mOwner==p.mOwner);}
const TTValue & operator*() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->index_to_key(mLoc);
}
const TTValue * operator->() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return &mOwner->index_to_key(mLoc);
}
};
friend class iterator;
friend class const_iterator;
////////////////////////////////////////////////////////////////////////////////////
// Seach For A Given Key. Will Return end() if Failed - O(log n)
////////////////////////////////////////////////////////////////////////////////////
iterator find(const TTValue &key)
{
return iterator(this,find_index(key));
}
////////////////////////////////////////////////////////////////////////////////////
// Get An Iterator To The Smallest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
iterator begin()
{
return iterator(this, this->front());
}
////////////////////////////////////////////////////////////////////////////////////
// Get An Iterator To The Largest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
iterator rbegin()
{
return iterator(this, this->back());
}
////////////////////////////////////////////////////////////////////////////////////
// The Invalid Iterator, Use As A Stop Condition In Your For Loops - O(1)
////////////////////////////////////////////////////////////////////////////////////
iterator end()
{
return iterator(this);
}
////////////////////////////////////////////////////////////////////////////////////
// Seach For A Given Key. Will Return end() if Failed - O(log n)
////////////////////////////////////////////////////////////////////////////////////
const_iterator find(const TTValue &key) const
{
return const_iterator(this, find_index(key));
}
////////////////////////////////////////////////////////////////////////////////////
// Get An const_iterator To The Smallest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
const_iterator begin() const
{
return const_iterator(this, this->front());
}
////////////////////////////////////////////////////////////////////////////////////
// Get An const_iterator To The Largest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
const_iterator rbegin() const
{
return const_iterator(this, this->back());
}
////////////////////////////////////////////////////////////////////////////////////
// The Invalid const_iterator, Use As A Stop Condition In Your For Loops - O(1)
////////////////////////////////////////////////////////////////////////////////////
const_iterator end() const
{
return const_iterator(this);
}
////////////////////////////////////////////////////////////////////////////////////
// Removes The Element Pointed To At (it) And Decrements (it) - O((log n)^2)
////////////////////////////////////////////////////////////////////////////////////
void erase(const iterator &it)
{
assert(it.mOwner==this && it.mLoc>=0&&it.mLoc<CAPACITY);
erase_index(it.mLoc);
}
////////////////////////////////////////////////////////////////////////////////////
//
////////////////////////////////////////////////////////////////////////////////////
iterator lower_bound(const TTValue &key)
{
return iterator(this, find_index(key));
}
////////////////////////////////////////////////////////////////////////////////////
//
////////////////////////////////////////////////////////////////////////////////////
iterator upper_bound(const TTValue &key)
{
// fixme, this don't work
iterator ubound(this, find_index(key));
ubound++;
return ubound;
}
};
template<class T, int ARG_CAPACITY>
class set_vs : public set_base<storage::value_semantics_node<T,ARG_CAPACITY,tree_node>,0 >
{
public:
typedef typename storage::value_semantics_node<T,ARG_CAPACITY,tree_node> TStorageTraits;
typedef typename TStorageTraits::TValue TTValue;
enum
{
CAPACITY = ARG_CAPACITY
};
set_vs() {}
};
template<class T, int ARG_CAPACITY>
class set_os : public set_base<storage::object_semantics_node<T,ARG_CAPACITY,tree_node>,0 >
{
public:
typedef typename storage::object_semantics_node<T,ARG_CAPACITY,tree_node> TStorageTraits;
typedef typename TStorageTraits::TValue TTValue;
enum
{
CAPACITY = ARG_CAPACITY
};
set_os() {}
};
template<class T, int ARG_CAPACITY, int ARG_MAX_CLASS_SIZE>
class set_is : public set_base<storage::virtual_semantics_node<T,ARG_CAPACITY,ARG_MAX_CLASS_SIZE,tree_node>,0 >
{
public:
typedef typename storage::virtual_semantics_node<T,ARG_CAPACITY,ARG_MAX_CLASS_SIZE,tree_node> TStorageTraits;
typedef typename TStorageTraits::TValue TTValue;
enum
{
CAPACITY = ARG_CAPACITY,
MAX_CLASS_SIZE = ARG_MAX_CLASS_SIZE
};
set_is() {}
};
template<class K,class V,int IS_MULTI>
class map_base : public tree_base<K,IS_MULTI>
{
public:
typedef K TKeyStorageTraits;
typedef typename K::TValue TKTValue;
typedef V TValueStorageTraits;
typedef typename V::TValue TVTValue;
////////////////////////////////////////////////////////////////////////////////////
// Capacity Enum
////////////////////////////////////////////////////////////////////////////////////
enum
{
CAPACITY = K::CAPACITY
};
private:
array_base<TValueStorageTraits> mValues;
public:
map_base()
{
compile_assert<K::CAPACITY==V::CAPACITY>();
}
void clear()
{
tree_base<K,IS_MULTI>::clear();
mValues.clear();
}
////////////////////////////////////////////////////////////////////////////////////
// Adds Element Value At Location Key - O(log n)
////////////////////////////////////////////////////////////////////////////////////
void insert(const TKTValue &key,const TVTValue &value)
{
assert(!IS_MULTI || find_index(key)==tree_node::NULL_NODE); //fixme handle duplicates more sensibly?
this->alloc_key(key);
this->insert_alloced_key();
assert(check_validity());
mValues.construct(this->index_of_alloced_key(),value);
}
////////////////////////////////////////////////////////////////////////////////////
// Adds Element Value At Location Key returns a reference
////////////////////////////////////////////////////////////////////////////////////
TVTValue &insert(const TKTValue &key)
{
assert(!IS_MULTI || find_index(key)==tree_node::NULL_NODE); //fixme handle duplicates more sensibly?
alloc_key(key);
this->insert_alloced_key();
int idx=this->index_of_alloced_key();
assert(check_validity());
mValues.construct(idx);
return mValues[idx];
}
////////////////////////////////////////////////////////////////////////////////////
// Adds Element Value At Location Key returns a rew pointer for placement new
////////////////////////////////////////////////////////////////////////////////////
TRatlNew *insert_raw(const TKTValue &key)
{
assert(!IS_MULTI || find_index(key)==tree_node::NULL_NODE); //fixme handle duplicates more sensibly?
alloc_key(key);
this->insert_alloced_key();
assert(check_validity());
return mValues.alloc_raw(this->index_of_alloced_key());
}
////////////////////////////////////////////////////////////////////////////////////
// After calling alloc_key*, you may call this to alloc the value
////////////////////////////////////////////////////////////////////////////////////
TVTValue &alloc_value()
{
mValues.construct(this->index_of_alloced_key());
return mValues[this->index_of_alloced_key()];
}
////////////////////////////////////////////////////////////////////////////////////
// After calling alloc_key*, you may call this to alloc_raw the value
////////////////////////////////////////////////////////////////////////////////////
TRatlNew *alloc_value_raw()
{
return mValues.alloc_raw(this->index_of_alloced_key());
}
template<class CAST_TO>
CAST_TO *verify_alloc(CAST_TO *p) const
{
return mValues.verify_alloc(p);
}
////////////////////////////////////////////////////////////////////////////////////
// Removes The First Element With Key (key) - O(log n)
////////////////////////////////////////////////////////////////////////////////////
void erase(const TKTValue &key)
{
//fixme this is a double search currently
int i=this->find_index(key);
if (i!=tree_node::NULL_NODE)
{
this->erase_index(i);
mValues.destruct(i);
}
}
////////////////////////////////////////////////////////////////////////////////////
// Iterator
//
// A map is sorted in ascending order on the KEY type. ++ and -- are both
// O((log n)^2) operations
//
////////////////////////////////////////////////////////////////////////////////////
class const_iterator;
class iterator
{
friend class map_base<K,V, IS_MULTI>;
friend class const_iterator;
int mLoc;
map_base<K,V, IS_MULTI>* mOwner;
public:
iterator(map_base<K,V, IS_MULTI> *owner=0, int loc=tree_node::NULL_NODE) :
mOwner(owner),
mLoc(loc)
{
}
iterator(const iterator &o) :
mOwner(o.mOwner),
mLoc(o.mLoc)
{
}
void operator=(const iterator &o)
{
mOwner=o.mOwner;
mLoc=o.mLoc;
}
iterator operator++() //prefix
{
assert(mOwner);
mLoc=mOwner->next(mLoc);
return *this;
}
iterator operator++(int) //postfix
{
assert(mOwner);
iterator old(*this);
mLoc=mOwner->next(mLoc);
return old;
}
iterator operator--() //prefix
{
assert(mOwner);
mLoc=mOwner->previous(mLoc);
return *this;
}
iterator operator--(int) //postfix
{
assert(mOwner);
iterator old(*this);
mLoc=mOwner->previous(mLoc);
return old;
}
bool operator!=(const iterator &p) const {return (mLoc!=p.mLoc || mOwner!=p.mOwner);}
bool operator==(const iterator &p) const {return (mLoc==p.mLoc && mOwner==p.mOwner);}
TVTValue & operator*() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->mValues[mLoc];
}
const TKTValue & key() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->index_to_key(mLoc);
}
TVTValue & value() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->mValues[mLoc];
}
TVTValue * operator->() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return &mOwner->mValues[mLoc];
}
};
class const_iterator
{
friend class map_base<K,V,IS_MULTI>;
int mLoc;
const map_base<K,V,IS_MULTI>* mOwner;
public:
const_iterator(const map_base<K,V,IS_MULTI> *owner=0, int loc=tree_node::NULL_NODE) :
mOwner(owner),
mLoc(loc)
{
}
const_iterator(const const_iterator &o) :
mOwner(o.mOwner),
mLoc(o.mLoc)
{
}
const_iterator(const iterator &o) :
mOwner(o.mOwner),
mLoc(o.mLoc)
{
}
void operator=(const const_iterator &o)
{
mOwner=o.mOwner;
mLoc=o.mLoc;
}
void operator=(const iterator &o)
{
mOwner=o.mOwner;
mLoc=o.mLoc;
}
const_iterator operator++() //prefix
{
assert(mOwner);
mLoc=mOwner->next(mLoc);
return *this;
}
const_iterator operator++(int) //postfix
{
assert(mOwner);
const_iterator old(*this);
mLoc=mOwner->next(mLoc);
return old;
}
const_iterator operator--() //prefix
{
assert(mOwner);
mLoc=mOwner->previous(mLoc);
return *this;
}
const_iterator operator--(int) //postfix
{
assert(mOwner);
const_iterator old(*this);
mLoc=mOwner->previous(mLoc);
return old;
}
bool operator!=(const const_iterator &p) const {return (mLoc!=p.mLoc || mOwner!=p.mOwner);}
bool operator==(const const_iterator &p) const {return (mLoc==p.mLoc && mOwner==p.mOwner);}
bool operator!=(const iterator &p) const {return (mLoc!=p.mLoc || mOwner!=p.mOwner);}
bool operator==(const iterator &p) const {return (mLoc==p.mLoc && mOwner==p.mOwner);}
const TVTValue & operator*() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->mValues[mLoc];
}
const TKTValue & key() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->index_to_key(mLoc);
}
const TVTValue & value() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return mOwner->mValues[mLoc];
}
const TVTValue * operator->() const
{
assert(mOwner);
assert(mLoc>=0&&mLoc<CAPACITY); // deferencing end()?
return &mOwner->mValues[mLoc];
}
};
friend class iterator;
friend class const_iterator;
////////////////////////////////////////////////////////////////////////////////////
// Seach For A Given Key. Will Return end() if Failed - O(log n)
////////////////////////////////////////////////////////////////////////////////////
iterator find(const TKTValue &key)
{
return iterator(this,this->find_index(key));
}
////////////////////////////////////////////////////////////////////////////////////
// Get An Iterator To The Smallest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
iterator begin()
{
return iterator(this, this->front());
}
////////////////////////////////////////////////////////////////////////////////////
// Get An Iterator To The Largest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
iterator rbegin()
{
return iterator(this, this->back());
}
////////////////////////////////////////////////////////////////////////////////////
// The Invalid Iterator, Use As A Stop Condition In Your For Loops - O(1)
////////////////////////////////////////////////////////////////////////////////////
iterator end()
{
return iterator(this);
}
////////////////////////////////////////////////////////////////////////////////////
// Seach For A Given Key. Will Return end() if Failed - O(log n)
////////////////////////////////////////////////////////////////////////////////////
const_iterator find(const TKTValue &key) const
{
return const_iterator(this, find_index(key));
}
////////////////////////////////////////////////////////////////////////////////////
// Get An const_iterator To The Smallest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
const_iterator begin() const
{
return const_iterator(this, this->front());
}
////////////////////////////////////////////////////////////////////////////////////
// Get An const_iterator To The Largest Element - O(log n)
////////////////////////////////////////////////////////////////////////////////////
const_iterator rbegin() const
{
return const_iterator(this, this->back());
}
////////////////////////////////////////////////////////////////////////////////////
// The Invalid const_iterator, Use As A Stop Condition In Your For Loops - O(1)
////////////////////////////////////////////////////////////////////////////////////
const_iterator end() const
{
return const_iterator(this);
}
////////////////////////////////////////////////////////////////////////////////////
// Removes The Element Pointed To At (it) And Decrements (it) - O((log n)^2)
////////////////////////////////////////////////////////////////////////////////////
void erase(const iterator &it)
{
assert(it.mOwner==this && it.mLoc>=0&&it.mLoc<CAPACITY);
erase_index(it.mLoc);
mValues.destruct(it.mLoc);
}
private:
bool check_validity()
{
#if (0)
int cnt=0;
iterator it=begin();
for (;it!=end();it++)
{
cnt++;
}
// assert(cnt==size());
return cnt==size();
#else
return true;
#endif
}
};
template<class K,class V, int ARG_CAPACITY>
class map_vs : public map_base<
storage::value_semantics_node<K,ARG_CAPACITY,tree_node>,
storage::value_semantics<V,ARG_CAPACITY>,
0 >
{
public:
typedef typename storage::value_semantics<V,ARG_CAPACITY> VStorageTraits;
typedef typename VStorageTraits::TValue TTValue;
enum
{
CAPACITY = ARG_CAPACITY
};
map_vs() {}
};
template<class K,class V, int ARG_CAPACITY>
class map_os : public map_base<
storage::value_semantics_node<K,ARG_CAPACITY,tree_node>,
storage::object_semantics<V,ARG_CAPACITY>,
0 >
{
public:
typedef typename storage::object_semantics<V,ARG_CAPACITY> VStorageTraits;
typedef typename VStorageTraits::TValue TTValue;
enum
{
CAPACITY = ARG_CAPACITY
};
map_os() {}
};
template<class K,class V, int ARG_CAPACITY,int ARG_MAX_CLASS_SIZE>
class map_is : public map_base<
storage::value_semantics_node<K,ARG_CAPACITY,tree_node>,
storage::virtual_semantics<V,ARG_CAPACITY,ARG_MAX_CLASS_SIZE>,
0 >
{
public:
typedef typename storage::virtual_semantics<V,ARG_CAPACITY,ARG_MAX_CLASS_SIZE> VStorageTraits;
typedef typename VStorageTraits::TValue TTValue;
enum
{
CAPACITY = ARG_CAPACITY,
MAX_CLASS_SIZE = ARG_MAX_CLASS_SIZE
};
map_is() {}
};
}
#endif