jedi-academy/codemp/Ratl/ratl_common.h
2013-04-26 22:27:20 +10:00

1180 lines
26 KiB
C++

////////////////////////////////////////////////////////////////////////////////////////
// RAVEN STANDARD TEMPLATE LIBRARY
// (c) 2002 Activision
//
//
// Common
// ------
// The raven libraries contain a number of common defines, enums, and typedefs which
// need to be accessed by all templates. Each of these is included here.
//
// Also included is a safeguarded assert file for all the asserts in RTL.
//
// This file is included in EVERY TEMPLATE, so it should be very light in order to
// reduce compile times.
//
//
// Format
// ------
// In order to simplify code and provide readability, the template library has some
// standard formats. Any new templates or functions should adhere to these formats:
//
// - All memory is statically allocated, usually by parameter SIZE
// - All classes provide an enum which defines constant variables, including CAPACITY
// - All classes which moniter the number of items allocated provide the following functions:
// size() - the number of objects
// empty() - does the container have zero objects
// full() - does the container have any room left for more objects
// clear() - remove all objects
//
//
// - Functions are defined in the following order:
// Capacity
// Constructors (copy, from string, etc...)
// Range (size(), empty(), full(), clear(), etc...)
// Access (operator[], front(), back(), etc...)
// Modification (add(), remove(), push(), pop(), etc...)
// Iteration (begin(), end(), insert(), erase(), find(), etc...)
//
//
// NOTES:
//
//
//
////////////////////////////////////////////////////////////////////////////////////////
#if !defined(RATL_COMMON_INC)
#define RATL_COMMON_INC
////////////////////////////////////////////////////////////////////////////////////////
// In VC++, Don't Bother With These Warnings
////////////////////////////////////////////////////////////////////////////////////////
#if defined(_MSC_VER) && !defined(__MWERKS__)
#pragma warning ( disable : 4786 ) // Truncated to 255 characters warning
#pragma warning ( disable : 4284 ) // nevamind what this is
#pragma warning ( disable : 4100 ) // unreferenced formal parameter
#pragma warning ( disable : 4512 ) // unable to generate default operator=
#pragma warning ( disable : 4130 ) // logical operation on address of string constant
#pragma warning ( disable : 4127 ) // conditional expression is constant
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Includes
////////////////////////////////////////////////////////////////////////////////////////
#if !defined(ASSERT_H_INC)
#include <assert.h>
#define ASSERT_H_INC
#endif
#if !defined(STRING_H_INC)
#include <string.h>
#define STRING_H_INC
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Forward Dec.
////////////////////////////////////////////////////////////////////////////////////////
class hfile;
// I don't know why this needs to be in the global namespace, but it does
class TRatlNew;
inline void *operator new(size_t,TRatlNew *where)
{
return where;
}
inline void operator delete(void *, TRatlNew *)
{
return;
}
namespace ratl
{
#ifdef _DEBUG
extern int HandleSaltValue; //this is used in debug for global uniqueness of handles
extern int FoolTheOptimizer; //this is used to make sure certain things aren't optimized out
#endif
////////////////////////////////////////////////////////////////////////////////////////
// All Raven Template Library Internal Memory Operations
//
// This is mostly for future use. For now, they only provide a simple interface with
// a couple extra functions (eql and clr).
////////////////////////////////////////////////////////////////////////////////////////
namespace mem
{
////////////////////////////////////////////////////////////////////////////////////////
// The Align Struct Is The Root Memory Structure for Inheritance and Object Semantics
//
// In most cases, we just want a simple int. However, sometimes we need to use an
// unsigned character array
//
////////////////////////////////////////////////////////////////////////////////////////
#if defined(_MSC_VER) && !defined(__MWERKS__)
struct alignStruct
{
int space;
};
#else
struct alignStruct
{
unsigned char space[16];
} __attribute__ ((aligned(16)));
#endif
inline void* cpy( void *dest, const void *src, size_t count )
{
return memcpy(dest, src, count);
}
inline void* set( void *dest, int c, size_t count )
{
return memset(dest, c, count);
}
inline int cmp( const void *buf1, const void *buf2, size_t count )
{
return memcmp( buf1, buf2, count );
}
inline bool eql( const void *buf1, const void *buf2, size_t count )
{
return (memcmp( buf1, buf2, count )==0);
}
inline void* zero( void *dest, size_t count )
{
return memset(dest, 0, count);
}
template<class T>
inline void cpy( T *dest, const T *src)
{
cpy(dest, src, sizeof(T));
}
template<class T>
inline void set(T *dest, int c)
{
set(dest, c, sizeof(T));
}
template<class T>
inline void swap(T *s1, T *s2)
{
unsigned char temp[sizeof(T)];
cpy((T *)temp,s1);
cpy(s1,s2);
cpy(s2,(T *)temp);
}
template<class T>
inline int cmp( const T *buf1, const T *buf2)
{
return cmp( buf1, buf2, sizeof(T) );
}
template<class T>
inline bool eql( const T *buf1, const T *buf2)
{
return cmp( buf1, buf2,sizeof(T))==0;
}
template<class T>
inline void zero( T *dest )
{
return set(dest, 0, sizeof(T));
}
}
namespace str
{
inline int len(const char *src)
{
return strlen(src);
}
inline void cpy(char *dest,const char *src)
{
strcpy(dest,src);
}
inline void ncpy(char *dest,const char *src,int destBufferLen)
{
strncpy(dest,src,destBufferLen);
}
inline void cat(char *dest,const char *src)
{
strcat(dest,src);
}
inline void ncat(char *dest,const char *src,int destBufferLen)
{
ncpy(dest+len(dest),src,destBufferLen-len(dest));
}
inline int cmp(const char *s1,const char *s2)
{
return strcmp(s1,s2);
}
inline bool eql(const char *s1,const char *s2)
{
return !strcmp(s1,s2);
}
inline int icmp(const char *s1,const char *s2)
{
return Q_stricmp(s1,s2);
}
inline int cmpi(const char *s1,const char *s2)
{
return Q_stricmp(s1,s2);
}
inline bool ieql(const char *s1,const char *s2)
{
return !Q_stricmp(s1,s2);
}
inline bool eqli(const char *s1,const char *s2)
{
return !Q_stricmp(s1,s2);
}
inline char *tok(char *s,const char *gap)
{
return strtok(s,gap);
}
void to_upper(char *dest);
void to_lower(char *dest);
void printf(char *dest,const char *formatS, ...);
}
////////////////////////////////////////////////////////////////////////////////////////
// The Raven Template Library Compile Assert
//
// If, during compile time the stuff under (condition) is zero, this code will not
// compile.
////////////////////////////////////////////////////////////////////////////////////////
template<int condition>
class compile_assert
{
#ifdef _DEBUG
int junk[(1 - (2 * !condition))]; // Look At Where This Was Being Compiled
public:
compile_assert()
{
assert(condition);
junk[0]=FoolTheOptimizer++;
}
int operator()()
{
assert(condition);
FoolTheOptimizer++;
return junk[0];
}
#else
public:
int operator()()
{
return 1;
}
#endif;
};
////////////////////////////////////////////////////////////////////////////////////////
// The Raven Template Library Base Class
//
// This is the base class for all the Raven Template Library container classes like
// vector_vs and pool_vs.
//
// This class might be a good place to put memory profile code in the future.
//
////////////////////////////////////////////////////////////////////////////////////////
class ratl_base
{
public:
#ifndef _XBOX
void save(hfile& file);
void load(hfile& file);
#endif
void ProfilePrint(const char * format, ...);
public:
static void* OutputPrint;
};
////////////////////////////////////////////////////////////////////////////////////////
// this is a simplified version of bits_vs
////////////////////////////////////////////////////////////////////////////////////////
template <int SZ>
class bits_base
{
protected:
enum
{
BITS_SHIFT = 5, // 5. Such A Nice Number
BITS_INT_SIZE = 32, // Size Of A Single Word
BITS_AND = (BITS_INT_SIZE - 1), // Used For And Operation
ARRAY_SIZE = ((SZ + BITS_AND)/(BITS_INT_SIZE)), // Num Words Used
BYTE_SIZE = (ARRAY_SIZE*sizeof(unsigned int)), // Num Bytes Used
};
////////////////////////////////////////////////////////////////////////////////////
// Data
////////////////////////////////////////////////////////////////////////////////////
unsigned int mV[ARRAY_SIZE];
public:
enum
{
SIZE = SZ,
CAPACITY = SZ,
};
bits_base(bool init=true,bool initValue=false)
{
if (init)
{
if (initValue)
{
set();
}
else
{
clear();
}
}
}
void clear()
{
mem::zero(&mV,BYTE_SIZE);
}
void set()
{
mem::set(&mV, 0xff,BYTE_SIZE);
}
void set_bit(const int i)
{
assert(i>=0 && i < SIZE);
mV[i>>BITS_SHIFT] |= (1<<(i&BITS_AND));
}
void clear_bit(const int i)
{
assert(i>=0 && i < SIZE);
mV[i>>BITS_SHIFT] &= ~(1<<(i&BITS_AND));
}
void mark_bit(const int i, bool set)
{
assert(i>=0 && i < SIZE);
if (set)
{
mV[i>>BITS_SHIFT] |= (1<<(i&BITS_AND));
}
else
{
mV[i>>BITS_SHIFT] &= ~(1<<(i&BITS_AND));
}
}
bool operator[](const int i) const
{
assert(i>=0 && i < SIZE);
return (mV[i>>BITS_SHIFT] & (1<<(i&BITS_AND)))!=0;
}
int next_bit(int start=0,bool onBit=true) const
{
assert(start>=0&&start<=SIZE); //we have to accept start==size for the way the loops are done
if (start>=SIZE)
{
return SIZE; // Did Not Find
}
// Get The Word Which Contains The Start Bit & Mask Out Everything Before The Start Bit
//--------------------------------------------------------------------------------------
unsigned int v = mV[start>>BITS_SHIFT];
if (!onBit)
{
v= (~v);
}
v >>= (start&31);
// Search For The First Non Zero Word In The Array
//-------------------------------------------------
while(!v)
{
start = (start & (~(BITS_INT_SIZE-1))) + BITS_INT_SIZE;
if (start>=SIZE)
{
return SIZE; // Did Not Find
}
v = mV[start>>BITS_SHIFT];
if (!onBit)
{
v= (~v);
}
}
// So, We've Found A Non Zero Word, So Start Masking Against Parts To Skip Over Bits
//-----------------------------------------------------------------------------------
if (!(v&0xffff))
{
start+=16;
v>>=16;
}
if (!(v&0xff))
{
start+=8;
v>>=8;
}
if (!(v&0xf))
{
start+=4;
v>>=4;
}
// Time To Search Each Bit
//-------------------------
while(!(v&1))
{
start++;
v>>=1;
}
if (start>=SIZE)
{
return SIZE;
}
return start;
}
};
////////////////////////////////////////////////////////////////////////////////////////
// Raven Standard Compare Class
////////////////////////////////////////////////////////////////////////////////////////
struct ratl_compare
{
float mCost;
int mHandle;
bool operator<(const ratl_compare& t) const
{
return (mCost<t.mCost);
}
};
////////////////////////////////////////////////////////////////////////////////////////
// this is used to keep track of the constuction state for things that are always constucted
////////////////////////////////////////////////////////////////////////////////////////
class bits_true
{
public:
void clear()
{
}
void set()
{
}
void set_bit(const int i)
{
}
void clear_bit(const int i)
{
}
bool operator[](const int i) const
{
return true;
}
int next_bit(int start=0,bool onBit=true) const
{
assert(onBit); ///I didn't want to add the sz template arg, you could though
return start;
}
};
namespace storage
{
template<class T,int SIZE>
struct value_semantics
{
enum
{
CAPACITY = SIZE,
};
typedef T TAlign; // this is any type that has the right alignment
typedef T TValue; // this is the actual thing the user uses
typedef T TStorage; // this is what we make our array of
typedef bits_true TConstructed;
typedef TStorage TArray[SIZE];
enum
{
NEEDS_CONSTRUCT=0,
TOTAL_SIZE=sizeof(TStorage),
VALUE_SIZE=sizeof(TStorage),
};
static void construct(TStorage *)
{
}
static void construct(TStorage *me,const TValue &v)
{
*me=v;
}
static void destruct(TStorage *)
{
}
static TRatlNew *raw(TStorage *me)
{
return (TRatlNew *)me;
}
static T * ptr(TStorage *me)
{
return me;
}
static const T * ptr(const TStorage *me)
{
return me;
}
static T & ref(TStorage *me)
{
return *me;
}
static const T & ref(const TStorage *me)
{
return *me;
}
static T *raw_array(TStorage *me)
{
return me;
}
static const T *raw_array(const TStorage *me)
{
return me;
}
static void swap(TStorage *s1,TStorage *s2)
{
mem::swap(ptr(s1),ptr(s2));
}
static int pointer_to_index(const void *s1,const void *s2)
{
return ((TStorage *)s1)-((TStorage *)s2);
}
};
template<class T,int SIZE>
struct object_semantics
{
enum
{
CAPACITY = SIZE,
};
typedef mem::alignStruct TAlign; // this is any type that has the right alignment
typedef T TValue; // this is the actual thing the user uses
typedef bits_base<SIZE> TConstructed;
struct TStorage
{
TAlign mMemory[((sizeof(T) + sizeof(TAlign) -1 )/sizeof(TAlign))];
};
typedef TStorage TArray[SIZE];
enum
{
NEEDS_CONSTRUCT=1,
TOTAL_SIZE=sizeof(TStorage),
VALUE_SIZE=sizeof(TStorage),
};
static void construct(TStorage *me)
{
new(raw(me)) TValue();
}
static void construct(TStorage *me,const TValue &v)
{
new(raw(me)) TValue(v);
}
static void destruct(TStorage *me)
{
ptr(me)->~T();
}
static TRatlNew *raw(TStorage *me)
{
return (TRatlNew *)me;
}
static T * ptr(TStorage *me)
{
return (T *)me;
}
static const T * ptr(const TStorage *me)
{
return (const T *)me;
}
static T & ref(TStorage *me)
{
return *(T *)me;
}
static const T & ref(const TStorage *me)
{
return *(const T *)me;
}
static void swap(TStorage *s1,TStorage *s2)
{
TValue temp(ref(s1));
ref(s1)=ref(s2);
ref(s2)=temp;
}
static int pointer_to_index(const void *s1,const void *s2)
{
return ((TStorage *)s1)-((TStorage *)s2);
}
};
template<class T,int SIZE,int MAX_CLASS_SIZE>
struct virtual_semantics
{
enum
{
CAPACITY = SIZE,
};
typedef mem::alignStruct TAlign; // this is any type that has the right alignment
typedef T TValue; // this is the actual thing the user uses
typedef bits_base<SIZE> TConstructed;
struct TStorage
{
TAlign mMemory[((MAX_CLASS_SIZE + sizeof(TAlign) -1 )/sizeof(TAlign))];
};
typedef TStorage TArray[SIZE];
enum
{
NEEDS_CONSTRUCT=1,
TOTAL_SIZE=sizeof(TStorage),
VALUE_SIZE=MAX_CLASS_SIZE,
};
static void construct(TStorage *me)
{
new(raw(me)) TValue();
}
static void destruct(TStorage *me)
{
ptr(me)->~T();
}
static TRatlNew *raw(TStorage *me)
{
return (TRatlNew *)me;
}
static T * ptr(TStorage *me)
{
return (T *)me;
}
static const T * ptr(const TStorage *me)
{
return (const T *)me;
}
static T & ref(TStorage *me)
{
return *(T *)me;
}
static const T & ref(const TStorage *me)
{
return *(const T *)me;
}
// this is a bit suspicious, we are forced to do a memory swap, and for a class, that, say
// stores a pointer to itself, it won't work right
static void swap(TStorage *s1,TStorage *s2)
{
mem::swap(s1,s2);
}
static int pointer_to_index(const void *s1,const void *s2)
{
return ((TStorage *)s1)-((TStorage *)s2);
}
template<class CAST_TO>
static CAST_TO *verify_alloc(CAST_TO *p)
{
#ifdef _DEBUG
assert(p);
assert(dynamic_cast<const T *>(p));
T *ptr=p; // if this doesn't compile, you are trying to alloc something that is not derived from base
assert(dynamic_cast<const CAST_TO *>(ptr));
int i=VALUE_SIZE;
int k=MAX_CLASS_SIZE;
int j=sizeof(CAST_TO);
compile_assert<sizeof(CAST_TO)<=MAX_CLASS_SIZE>();
assert(sizeof(CAST_TO)<=MAX_CLASS_SIZE);
#endif
return p;
}
};
// The below versions are for nodes
template<class T,int SIZE,class NODE>
struct value_semantics_node
{
enum
{
CAPACITY = SIZE,
};
struct SNode
{
NODE nodeData;
T value;
};
typedef SNode TAlign; // this is any type that has the right alignment
typedef T TValue; // this is the actual thing the user uses
typedef SNode TStorage; // this is what we make our array of
typedef bits_true TConstructed;
typedef TStorage TArray[SIZE];
enum
{
NEEDS_CONSTRUCT=0,
TOTAL_SIZE=sizeof(TStorage),
VALUE_SIZE=sizeof(TValue),
};
static void construct(TStorage *)
{
}
static void construct(TStorage *me,const TValue &v)
{
me->value=v;
}
static void destruct(TStorage *)
{
}
static TRatlNew *raw(TStorage *me)
{
return (TRatlNew *)&me->value;
}
static T * ptr(TStorage *me)
{
return &me->value;
}
static const T * ptr(const TStorage *me)
{
return &me->value;
}
static T & ref(TStorage *me)
{
return me->value;
}
static const T & ref(const TStorage *me)
{
return me->value;
}
// this ugly unsafe cast-hack is a backhanded way of getting the node data from the value data
// this is so node support does not need to be added to the primitive containers
static NODE & node(TValue &v)
{
return *(NODE *)((unsigned char *)(&v)+int(&((TStorage *)0)->nodeData)-int(&((TStorage *)0)->value));
}
static const NODE & node(const TValue &v)
{
return *(const NODE *)((unsigned char *)(&v)+int(&((TStorage *)0)->nodeData)-int(&((TStorage *)0)->value));
}
static void swap(TStorage *s1,TStorage *s2)
{
mem::swap(&s1->value,&s2->value);
}
// this is hideous
static int pointer_to_index(const void *s1,const void *s2)
{
return
((TStorage *)(((unsigned char *)s1)-int(&((TStorage *)0)->value))) -
((TStorage *)(((unsigned char *)s2)-int(&((TStorage *)0)->value)));
}
};
template<class T,int SIZE,class NODE>
struct object_semantics_node
{
enum
{
CAPACITY = SIZE,
};
typedef mem::alignStruct TAlign; // this is any type that has the right alignment
typedef T TValue; // this is the actual thing the user uses
typedef bits_base<SIZE> TConstructed;
struct TValueStorage
{
TAlign mMemory[((sizeof(T) + sizeof(TAlign) -1 )/sizeof(TAlign))];
};
struct SNode
{
NODE nodeData;
TValueStorage value;
};
typedef SNode TStorage; // this is what we make our array of
typedef TStorage TArray[SIZE];
enum
{
NEEDS_CONSTRUCT=0,
TOTAL_SIZE=sizeof(TStorage),
VALUE_SIZE=sizeof(TValueStorage),
};
static void construct(TStorage *me)
{
new(raw(me)) TValue();
}
static void construct(TStorage *me,const TValue &v)
{
new(raw(me)) TValue(v);
}
static void destruct(TStorage *me)
{
ptr(me)->~T();
}
static TRatlNew *raw(TStorage *me)
{
return (TRatlNew *)&me->value;
}
static T * ptr(TStorage *me)
{
return (T *)&me->value;
}
static const T * ptr(const TStorage *me)
{
return (const T *)&me->value;
}
static T & ref(TStorage *me)
{
return *(T *)&me->value;
}
static const T & ref(const TStorage *me)
{
return *(const T *)&me->value;
}
static NODE & node(TStorage *me)
{
return me->nodeData;
}
static const NODE & node(const TStorage *me)
{
return me->nodeData;
}
// this ugly unsafe cast-hack is a backhanded way of getting the node data from the value data
// this is so node support does not need to be added to the primitive containers
static NODE & node(TValue &v)
{
return *(NODE *)((unsigned char *)(&v)+int(&((TStorage *)0)->nodeData)-int(&((TStorage *)0)->value));
}
static const NODE & node(const TValue &v)
{
return *(const NODE *)((unsigned char *)(&v)+int(&((TStorage *)0)->nodeData)-int(&((TStorage *)0)->value));
}
static void swap(TStorage *s1,TStorage *s2)
{
TValue temp(ref(s1));
ref(s1)=ref(s2);
ref(s2)=temp;
}
// this is hideous
static int pointer_to_index(const void *s1,const void *s2)
{
return
((TStorage *)(((unsigned char *)s1)-int(&((TStorage *)0)->value))) -
((TStorage *)(((unsigned char *)s2)-int(&((TStorage *)0)->value)));
}
};
template<class T,int SIZE,int MAX_CLASS_SIZE,class NODE>
struct virtual_semantics_node
{
enum
{
CAPACITY = SIZE,
};
typedef mem::alignStruct TAlign; // this is any type that has the right alignment
typedef T TValue; // this is the actual thing the user uses
typedef bits_base<SIZE> TConstructed;
struct TValueStorage
{
TAlign mMemory[((MAX_CLASS_SIZE + sizeof(TAlign) -1 )/sizeof(TAlign))];
};
struct SNode
{
NODE nodeData;
TValueStorage value;
};
typedef SNode TStorage; // this is what we make our array of
typedef TStorage TArray[SIZE];
enum
{
NEEDS_CONSTRUCT=1,
TOTAL_SIZE=sizeof(TStorage),
VALUE_SIZE=sizeof(TValueStorage),
};
static void construct(TStorage *me)
{
new(raw(me)) TValue();
}
static void destruct(TStorage *me)
{
ptr(me)->~T();
}
static TRatlNew *raw(TStorage *me)
{
return (TRatlNew *)&me->value;
}
static T * ptr(TStorage *me)
{
return (T *)&me->value;
}
static const T * ptr(const TStorage *me)
{
return (const T *)&me->value;
}
static T & ref(TStorage *me)
{
return *(T *)&me->value;
}
static const T & ref(const TStorage *me)
{
return *(const T *)&me->value;
}
static NODE & node(TStorage *me)
{
return me->nodeData;
}
static const NODE & node(const TStorage *me)
{
return me->nodeData;
}
// this ugly unsafe cast-hack is a backhanded way of getting the node data from the value data
// this is so node support does not need to be added to the primitive containers
static NODE & node(TValue &v)
{
return *(NODE *)((unsigned char *)(&v)+int(&((TStorage *)0)->nodeData)-int(&((TStorage *)0)->value));
}
static const NODE & node(const TValue &v)
{
return *(const NODE *)((unsigned char *)(&v)+int(&((TStorage *)0)->nodeData)-int(&((TStorage *)0)->value));
}
// this is a bit suspicious, we are forced to do a memory swap, and for a class, that, say
// stores a pointer to itself, it won't work right
static void swap(TStorage *s1,TStorage *s2)
{
mem::swap(&s1->value,&s2->value);
}
// this is hideous
static int pointer_to_index(const void *s1,const void *s2)
{
return
((TStorage *)(((unsigned char *)s1)-int(&((TStorage *)0)->value))) -
((TStorage *)(((unsigned char *)s2)-int(&((TStorage *)0)->value)));
}
template<class CAST_TO>
static CAST_TO *verify_alloc(CAST_TO *p)
{
#ifdef _DEBUG
assert(p);
assert(dynamic_cast<const T *>(p));
T *ptr=p; // if this doesn't compile, you are trying to alloc something that is not derived from base
assert(dynamic_cast<const CAST_TO *>(ptr));
int i=VALUE_SIZE;
int k=MAX_CLASS_SIZE;
int j=sizeof(CAST_TO);
compile_assert<sizeof(CAST_TO)<=MAX_CLASS_SIZE>();
assert(sizeof(CAST_TO)<=MAX_CLASS_SIZE);
#endif
return p;
}
};
}
////////////////////////////////////////////////////////////////////////////////////////
// The Array Base Class, used for most containers
////////////////////////////////////////////////////////////////////////////////////////
template<class T>
class array_base : public ratl_base
{
public:
////////////////////////////////////////////////////////////////////////////////////
// Capacity Enum
////////////////////////////////////////////////////////////////////////////////////
enum
{
CAPACITY = T::CAPACITY,
SIZE = T::CAPACITY,
};
////////////////////////////////////////////////////////////////////////////////////
// Data
////////////////////////////////////////////////////////////////////////////////////
typedef T TStorageTraits;
typedef typename T::TArray TTArray;
typedef typename T::TValue TTValue;
typedef typename T::TConstructed TTConstructed;
private:
TTArray mArray;
TTConstructed mConstructed;
public:
array_base()
{
}
~array_base()
{
clear();
}
void clear()
{
if (T::NEEDS_CONSTRUCT)
{
int i=mConstructed.next_bit();
while (i<SIZE)
{
T::destruct(mArray+i);
i=mConstructed.next_bit(i+1);
}
mConstructed.clear();
}
}
////////////////////////////////////////////////////////////////////////////////////
// Access Operator
////////////////////////////////////////////////////////////////////////////////////
TTValue& operator[](int index)
{
assert(index>=0 && index<SIZE);
assert(mConstructed[index]);
return T::ref(mArray+index);
}
////////////////////////////////////////////////////////////////////////////////////
// Const Access Operator
////////////////////////////////////////////////////////////////////////////////////
const TTValue& operator[](int index) const
{
assert(index>=0 && index<SIZE);
assert(mConstructed[index]);
return T::ref(mArray+index);
}
void construct(int i)
{
if (T::NEEDS_CONSTRUCT)
{
assert(!mConstructed[i]);
T::construct(mArray+i);
mConstructed.set_bit(i);
}
}
void construct(int i, const TTValue &v)
{
assert(i>=0 && i<SIZE);
T::construct(mArray+i,v);
if (T::NEEDS_CONSTRUCT)
{
assert(!mConstructed[i]);
mConstructed.set_bit(i);
}
}
void fill(const TTValue &v)
{
clear();
int i;
for (i=0;i<SIZE;i++)
{
T::construct(mArray+i,v);
}
if (T::NEEDS_CONSTRUCT)
{
mConstructed.set();
}
}
void swap(int i,int j)
{
assert(i>=0 && i<SIZE);
assert(j>=0 && j<SIZE);
assert(i!=j);
assert(mConstructed[i]);
assert(mConstructed[j]);
T::swap(mArray+i,mArray+j);
}
TRatlNew *alloc_raw(int i)
{
assert(i>=0 && i<SIZE);
if (T::NEEDS_CONSTRUCT)
{
assert(!mConstructed[i]);
mConstructed.set_bit(i);
}
return T::raw(mArray+i);
}
void destruct(int i)
{
assert(i>=0 && i<SIZE);
assert(mConstructed[i]);
if (T::NEEDS_CONSTRUCT)
{
T::destruct(mArray+i);
mConstructed.clear_bit(i);
}
}
int pointer_to_index(const TTValue *me) const
{
int index=T::pointer_to_index(me,mArray);
assert(index>=0 && index<SIZE);
assert(mConstructed[index]);
return index;
}
int pointer_to_index(const TRatlNew *me) const
{
int index=T::pointer_to_index(me,mArray);
assert(index>=0 && index<SIZE);
assert(mConstructed[index]);
return index;
}
typename T::TValue *raw_array()
{
return T::raw_array(mArray);
}
const typename T::TValue *raw_array() const
{
return T::raw_array(mArray);
}
template<class CAST_TO>
CAST_TO *verify_alloc(CAST_TO *p) const
{
return T::verify_alloc(p);
}
};
}
#endif