mirror of
https://github.com/ioquake/jedi-academy.git
synced 2024-11-22 04:11:57 +00:00
458 lines
No EOL
13 KiB
C++
458 lines
No EOL
13 KiB
C++
////////////////////////////////////////////////////////////////////////////////////////
|
|
// RAVEN STANDARD TEMPLATE LIBRARY
|
|
// (c) 2002 Activision
|
|
//
|
|
//
|
|
// KD Tree
|
|
// -------
|
|
//
|
|
//
|
|
//
|
|
// NOTES:
|
|
//
|
|
//
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
#if !defined(RATL_KDTREE_VS_INC)
|
|
#define RATL_KDTREE_VS_INC
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
// Includes
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
#if defined(RA_DEBUG_LINKING)
|
|
#pragma message("...including kdtree_vs.h")
|
|
#endif
|
|
#if !defined(RAGL_COMMON_INC)
|
|
#include "ragl_common.h"
|
|
#endif
|
|
namespace ragl
|
|
{
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
// The List Class
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
template <class T, int DIMENSION, int SIZE>
|
|
class kdtree_vs : public ratl::ratl_base
|
|
{
|
|
public:
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Capacity Enum
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
enum
|
|
{
|
|
CAPACITY = SIZE,
|
|
NULL_NODE = SIZE+2, // Invalid Node ID
|
|
TARG_NODE = SIZE+3 // Used To Mark Nodes Add Location
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Constructor
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
kdtree_vs() : mRoot(NULL_NODE)
|
|
{
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// How Many Objects Are In This Tree
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int size() const
|
|
{
|
|
return (mPool.size());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Are There Any Objects In This Tree?
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
bool empty() const
|
|
{
|
|
return (mRoot==NULL_NODE);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Is This List Filled?
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
bool full() const
|
|
{
|
|
return (mPool.full());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Clear All Elements
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void clear()
|
|
{
|
|
mRoot = NULL_NODE;
|
|
mPool.clear();
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Add A New Element To The Tree
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void add(const T& data)
|
|
{
|
|
// CREATE: New
|
|
//--------------------------------------------
|
|
int nNew = mPool.alloc();
|
|
mPool[nNew].mData = data;
|
|
mPool[nNew].mLeft = NULL_NODE;
|
|
mPool[nNew].mRight = NULL_NODE;
|
|
|
|
// LINK: (nNew)->(Parent)
|
|
//--------------------------------------------
|
|
if (mRoot==NULL_NODE)
|
|
{
|
|
mRoot = nNew;
|
|
mPool[nNew].mParent = NULL_NODE;
|
|
return;
|
|
}
|
|
|
|
// LINK: (nNew)->(Parent)
|
|
//--------------------------------------------
|
|
mPool[nNew].mParent = find_index(data, mRoot, 0, true, true);
|
|
|
|
|
|
// LINK: (Parent)->(nNew)
|
|
//--------------------------------------------
|
|
if (mPool[mPool[nNew].mParent].mLeft==TARG_NODE)
|
|
{
|
|
mPool[mPool[nNew].mParent].mLeft = nNew;
|
|
}
|
|
else if (mPool[mPool[nNew].mParent].mRight==TARG_NODE)
|
|
{
|
|
mPool[mPool[nNew].mParent].mRight = nNew;
|
|
}
|
|
|
|
// Hey! It Didn't Mark Any Targets, Which Means We Found An Exact match To This Data
|
|
//------------------------------------------------------------------------------------
|
|
else
|
|
{
|
|
mPool.free(nNew);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Does (data) Exist In The Tree?
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
bool find(const T& data)
|
|
{
|
|
assert(mRoot!=NULL_NODE); // If You Hit This Assert, You Are Asking For Data On An Empty Tree
|
|
|
|
int node = find_index(data, mRoot, 0, true, true);
|
|
|
|
// Exact Find, Or Found Root?
|
|
//----------------------------
|
|
if (mPool[node].mData==data || mPool[node].mParent==NULL_NODE)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
class range_query
|
|
{
|
|
public:
|
|
range_query() {}
|
|
|
|
public:
|
|
ratl::vector_vs<T, SIZE> mReported;
|
|
T mMins;
|
|
T mMaxs;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void find(range_query& query)
|
|
{
|
|
if (mRoot!=NULL_NODE)
|
|
{
|
|
query.mReported.clear();
|
|
tree_search(query);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
class node
|
|
{
|
|
public:
|
|
int mParent;
|
|
int mLeft;
|
|
int mRight;
|
|
|
|
T mData;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
class range_bounds
|
|
{
|
|
public:
|
|
int mMins[DIMENSION];
|
|
int mMaxs[DIMENSION];
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// This Private Function Of The Class Does A Standard Binary Tree Search
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int find_index(const T& data, int curNode, int curDimension, bool returnClosest, bool markTarget)
|
|
{
|
|
// Did We Just Go Off The End Of The Tree Or Find The Data We Were Looking For?
|
|
//------------------------------------------------------------------------------
|
|
if (curNode==NULL_NODE || mPool[curNode].mData==data)
|
|
{
|
|
return curNode;
|
|
}
|
|
|
|
|
|
// Calculate The Next Dimension For Searching
|
|
//--------------------------------------------
|
|
int nextDimension = curDimension+1;
|
|
if (nextDimension>=DIMENSION)
|
|
{
|
|
nextDimension = 0;
|
|
}
|
|
|
|
|
|
// Search Recursivly Down The Tree Either Left (For Data > Current Node), Or Right
|
|
//---------------------------------------------------------------------------------
|
|
int findRecursive;
|
|
bool goLeft = (data[curDimension] < mPool[curNode].mData[curDimension]);
|
|
if (goLeft)
|
|
{
|
|
findRecursive = find_index(data, mPool[curNode].mLeft, nextDimension, returnClosest, markTarget);
|
|
}
|
|
else
|
|
{
|
|
findRecursive = find_index(data, mPool[curNode].mRight, nextDimension, returnClosest, markTarget);
|
|
}
|
|
|
|
// Success!
|
|
//----------
|
|
if (findRecursive!=NULL_NODE)
|
|
{
|
|
return findRecursive;
|
|
}
|
|
|
|
// If We Want To Return The CLOSEST Node, And We Went Off The End, Then Return This One
|
|
//--------------------------------------------------------------------------------------
|
|
if (returnClosest)
|
|
{
|
|
// If We Are Asked To Mark The Target, We Mark (TARG_NODE) At Either mLeft or mRight,
|
|
// Depending On Where The Node Should Have Been
|
|
//----------------------------------------------------------------------------------
|
|
if (markTarget)
|
|
{
|
|
if (goLeft)
|
|
{
|
|
mPool[curNode].mLeft = TARG_NODE;
|
|
}
|
|
else
|
|
{
|
|
mPool[curNode].mRight = TARG_NODE;
|
|
}
|
|
}
|
|
|
|
// Go Ahead And Return This Node, It's The One We Would Have Put As The Child
|
|
return curNode;
|
|
}
|
|
|
|
// Return The Results Of The Recursive Call
|
|
//------------------------------------------
|
|
return NULL_NODE;
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// This function just sets up the range bounds and starts the recursive tree search
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void tree_search(range_query& query)
|
|
{
|
|
range_bounds bounds;
|
|
for (int i=0; i<DIMENSION; i++)
|
|
{
|
|
bounds.mMins[i] = 0;
|
|
bounds.mMaxs[i] = 0;
|
|
}
|
|
tree_search(query, mRoot, 0, bounds);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void tree_search(range_query& query, int curNode, int curDimension, range_bounds bounds)
|
|
{
|
|
assert(curNode<SIZE);
|
|
|
|
// Is This Node In The Query Range? If So, Report It
|
|
//----------------------------------------------------
|
|
if (curNode!=NULL_NODE && tree_search_node_in_range(query, mPool[curNode]))
|
|
{
|
|
query.mReported.push_back(mPool[curNode].mData);
|
|
}
|
|
|
|
// If This Is A Leaf Node, We're Done Here
|
|
//-----------------------------------------
|
|
if (curNode==NULL_NODE || (mPool[curNode].mLeft==NULL_NODE && mPool[curNode].mRight==NULL_NODE))
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Calculate The Next Dimension For Searching
|
|
//--------------------------------------------
|
|
int nextDimension = curDimension+1;
|
|
if (nextDimension>=DIMENSION)
|
|
{
|
|
nextDimension = 0;
|
|
}
|
|
|
|
|
|
// Test To See If Our Subtree Is In Range
|
|
//----------------------------------------
|
|
ESide Side = tree_search_bounds_in_range(query, bounds);
|
|
|
|
// If The Bounds Are Contained Entirely Within The Query Range, We Report The Sub Tree
|
|
//-------------------------------------------------------------------------------------
|
|
if (Side==Side_AllIn)
|
|
{
|
|
tree_search_report_sub_tree(query, curNode);
|
|
}
|
|
|
|
// Otherwise, If Our Bounds Intersect The Query Range, We Need To Look Further
|
|
//-----------------------------------------------------------------------------
|
|
else if (Side==Side_In)
|
|
{
|
|
// Test The Left Child
|
|
//---------------------
|
|
if (mPool[curNode].mLeft!=NULL_NODE)
|
|
{
|
|
int OldMaxs = bounds.mMaxs[curDimension];
|
|
if ( !bounds.mMins[curDimension] || ((mPool[curNode].mData[curDimension]) < (mPool[bounds.mMins[curDimension]].mData[curDimension])) )
|
|
{
|
|
bounds.mMins[curDimension] = curNode;
|
|
}
|
|
tree_search(query, mPool[curNode].mLeft, nextDimension, bounds);
|
|
bounds.mMaxs[curDimension] = OldMaxs; // Restore Old Maxs For The Right Child Search
|
|
}
|
|
|
|
// Test The Right Child
|
|
//----------------------
|
|
if (mPool[curNode].mRight!=NULL_NODE)
|
|
{
|
|
if ( !bounds.mMaxs[curDimension] || ((mPool[bounds.mMaxs[curDimension]].mData[curDimension]) < (mPool[curNode].mData[curDimension])) )
|
|
{
|
|
bounds.mMaxs[curDimension] = curNode;
|
|
}
|
|
tree_search(query, mPool[curNode].mRight, nextDimension, bounds);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// This Function Returns True If The Node Is Within The Query Range
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
bool tree_search_node_in_range(range_query& query, node& n)
|
|
{
|
|
for (int dim=0; dim<DIMENSION; dim++)
|
|
{
|
|
if (n.mData[dim]<query.mMins[dim] || query.mMaxs[dim]<n.mData[dim])
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
ESide tree_search_bounds_in_range(range_query& query, range_bounds& bounds)
|
|
{
|
|
ESide S = Side_AllIn;
|
|
for (int dim=0; dim<DIMENSION; dim++)
|
|
{
|
|
// If Any Of Our Dimensions Are Undefined Right Now, Always Return INTERSECT
|
|
//---------------------------------------------------------------------------
|
|
if (!bounds.mMaxs[dim] || !bounds.mMins[dim])
|
|
{
|
|
return Side_In;
|
|
}
|
|
|
|
// Check To See If They Intersect At All?
|
|
//----------------------------------------
|
|
if ((mPool[bounds.mMaxs[dim]].mData[dim]<query.mMins[dim]) ||
|
|
(query.mMaxs[dim]<mPool[bounds.mMins[dim]].mData[dim]))
|
|
{
|
|
return Side_None;
|
|
}
|
|
|
|
// Check To See If It Is Contained
|
|
//---------------------------------
|
|
if ((mPool[bounds.mMins[dim]].mData[dim]<query.mMins[dim]) ||
|
|
(query.mMaxs[dim]<mPool[bounds.mMaxs[dim]].mData[dim]))
|
|
{
|
|
S = Side_In;
|
|
}
|
|
}
|
|
return S;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Add The Cur Node And All Childeren Of The Cur Node
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void tree_search_report_sub_tree(range_query& query, int curNode)
|
|
{
|
|
assert(curNode<SIZE);
|
|
|
|
if (mPool[curNode].mLeft!=NULL_NODE)
|
|
{
|
|
query.mReported.push_back(mPool[mPool[curNode].mLeft].mData);
|
|
tree_search_report_sub_tree(query, mPool[curNode].mRight);
|
|
}
|
|
if (mPool[curNode].mRight!=NULL_NODE)
|
|
{
|
|
query.mReported.push_back(mPool[mPool[curNode].mRight].mData);
|
|
tree_search_report_sub_tree(query, mPool[curNode].mRight);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Data
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
private:
|
|
ratl::handle_pool_vs<node, SIZE> mPool; // The Allocation Data Pool
|
|
int mRoot; // The Beginning Of The Tree
|
|
};
|
|
|
|
}
|
|
#endif |