cnq3/code/renderer/shaders/crp/transp_resolve.hlsl

198 lines
5.6 KiB
HLSL

/*
===========================================================================
Copyright (C) 2023 Gian 'myT' Schellenbaum
This file is part of Challenge Quake 3 (CNQ3).
Challenge Quake 3 is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Challenge Quake 3 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
===========================================================================
*/
// reads per-pixel fragment linked lists into arrays, sorts them and composites them
#include "common.hlsli"
#include "oit.h.hlsli"
#include "fullscreen.hlsli"
#include "../common/state_bits.h.hlsli"
cbuffer RootConstants
{
uint renderTargetTexture;
uint shaderIndexBuffer;
uint indexTexture;
uint fragmentBuffer;
uint centerPixel; // y: 16 - x: 16
uint depthTexture;
float linearDepthA;
float linearDepthB;
float2 scissorRectMin;
float2 scissorRectMax;
};
uint GetShaderStage(uint stateBits)
{
return (stateBits & GLS_STAGEINDEX_BITS) >> GLS_STAGEINDEX_SHIFT;
}
bool IsBehind(float depthA, float depthB, uint stageA, uint stageB)
{
if(depthA > depthB)
{
return true;
}
if(depthA == depthB && stageA < stageB)
{
return true;
}
return false;
}
// from NVIDIA's 2007 "Soft Particles" whitepaper by Tristan Lorach
float Contrast(float d, float power)
{
bool aboveHalf = d > 0.5;
float base = saturate(2.0 * (aboveHalf ? (1.0 - d) : d));
float r = 0.5 * pow(base, power);
return aboveHalf ? (1.0 - r) : r;
}
float GetBitAsFloat(uint bits, uint bitIndex)
{
return (bits & (1u << bitIndex)) ? 1.0 : 0.0;
}
float2 UnpackHalf2(uint data)
{
return float2(f16tof32(data), f16tof32(data >> 16));
}
float4 DepthFadeFragmentColor(float4 color, OIT_Fragment fragment, float storedDepthZW)
{
if(((fragment.depthFadeScaleBias >> 8) & 1) == 0)
{
return color;
}
#define BIT(Index) GetBitAsFloat(fragment.depthFadeScaleBias, Index)
float4 dst = color;
float2 distOffset = UnpackHalf2(fragment.depthFadeDistOffset);
float4 fadeColorScale = float4(BIT(0), BIT(1), BIT(2), BIT(3));
float4 fadeColorBias = float4(BIT(4), BIT(5), BIT(6), BIT(7));
float zwDepth = storedDepthZW; // stored depth, z/w
float depthS = LinearDepth(zwDepth, linearDepthA, linearDepthB); // stored depth, linear
float depthP = fragment.depth - distOffset.y; // fragment depth, linear
float fadeScale = Contrast((depthS - depthP) * distOffset.x, 2.0);
dst = lerp(dst * fadeColorScale + fadeColorBias, dst, fadeScale);
#undef BIT
return dst;
}
float4 ps(VOut input) : SV_Target
{
Texture2D renderTarget = ResourceDescriptorHeap[renderTargetTexture];
int2 tc = int2(input.position.x, input.position.y);
float4 color = renderTarget.Load(int3(tc.x, tc.y, 0));
if(any(input.position.xy < scissorRectMin) ||
any(input.position.xy > scissorRectMax))
{
return color;
}
RWTexture2D<uint> index = ResourceDescriptorHeap[indexTexture];
RWStructuredBuffer<OIT_Fragment> fragments = ResourceDescriptorHeap[fragmentBuffer];
Texture2D depthTex = ResourceDescriptorHeap[depthTexture];
uint fragmentIndex = index[tc];
uint i;
OIT_Fragment sorted[OIT_MAX_FRAGMENTS_PER_PIXEL];
uint fragmentCount = 0;
// grab this pixel's fragments
while(fragmentIndex != 0 && fragmentCount < OIT_MAX_FRAGMENTS_PER_PIXEL)
{
sorted[fragmentCount] = fragments[fragmentIndex];
fragmentIndex = sorted[fragmentCount].next;
++fragmentCount;
}
// sort the fragments using an insertion sort
for(i = 1; i < fragmentCount; ++i)
{
OIT_Fragment insert = sorted[i];
uint stage = GetShaderStage(insert.stateBits);
uint j = i;
while(j > 0 && IsBehind(insert.depth, sorted[j - 1].depth, stage, GetShaderStage(sorted[j - 1].stateBits)))
{
sorted[j] = sorted[j - 1];
--j;
}
sorted[j] = insert;
}
// blend the results
int lastFragmentIndex = -1;
float storedDepthZW = depthTex.Load(int3(input.position.xy, 0)).x; // stored depth, z/w
float dstDepth = 1.0;
for(i = 0; i < fragmentCount; ++i)
{
OIT_Fragment frag = sorted[i];
uint stateBits = frag.stateBits;
float fragDepth = frag.depth;
if((stateBits & (GLS_DEPTHFUNC_EQUAL | GLS_DEPTHTEST_DISABLE)) == GLS_DEPTHFUNC_EQUAL &&
fragDepth != dstDepth)
{
continue;
}
float4 fragColor = UnpackColor(frag.color);
float4 prevColor = color;
fragColor = DepthFadeFragmentColor(fragColor, frag, storedDepthZW);
color = Blend(fragColor, color, frag.stateBits);
if((stateBits & GLS_DEPTHMASK_TRUE) != 0u &&
fragDepth < dstDepth)
{
dstDepth = fragDepth;
}
// we have to not include the alpha channel in this test for it to be correct
if(any(color.rgb != prevColor.rgb))
{
lastFragmentIndex = (int)i;
}
}
// write out the fragment shader ID of the closest visible fragment of the center pixel
if(lastFragmentIndex >= 0)
{
OIT_Fragment closest = sorted[lastFragmentIndex];
uint shaderTrace = closest.shaderTrace;
if(shaderTrace & 1)
{
uint2 fragmentCoords = uint2(input.position.xy);
uint2 centerCoords = uint2(centerPixel & 0xFFFF, centerPixel >> 16);
if(all(fragmentCoords == centerCoords))
{
RWByteAddressBuffer shaderIdBuf = ResourceDescriptorHeap[shaderIndexBuffer];
uint shaderIndex = shaderTrace >> 1;
shaderIdBuf.Store(0, shaderIndex);
}
}
}
return color;
}