cnq3/code/renderer/shaders/crp/dl_draw.hlsl
myT a76dba5cfb raytracing soft shadows, normal smoothing, G-buffer viz
- brightness-corrected ImGUI drawing
- upgraded shader code to HLSL 2021
- vertex normals drawing
2024-02-06 23:15:31 +01:00

256 lines
7.7 KiB
HLSL

/*
===========================================================================
Copyright (C) 2024 Gian 'myT' Schellenbaum
This file is part of Challenge Quake 3 (CNQ3).
Challenge Quake 3 is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Challenge Quake 3 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
===========================================================================
*/
// direct lighting from dynamic lights
#include "common.hlsli"
#include "fullscreen.hlsli"
#include "raytracing.h.hlsli"
#include "scene_view.h.hlsli"
#include "alpha_test.h.hlsli"
cbuffer RootConstants
{
uint blueNoiseTextureIndex;
};
#define CLASS_OPAQUE 0u
#define CLASS_INVISIBLE 1u
#define CLASS_TRANSLUCENT 2u
uint ClassifyNonOpaqueTriangle(inout float3 light, StructuredBuffer<TLASInstance> tlasInstanceBuffer, uint instanceId, uint meshId, uint triangleId, float2 bary2, bool frontFace)
{
TLASInstance instance = tlasInstanceBuffer[instanceId];
#if 0
// @TODO: is this needed or not?
// cull mode: 0 is front-sided, 1 is back-sided
if((frontFace && instance.cullMode == 1) ||
(!frontFace && instance.cullMode == 0))
{
return CLASS_INVISIBLE;
}
#endif
StructuredBuffer<BLASMesh> meshBuffer = ResourceDescriptorHeap[instance.meshBufferIndex];
BLASMesh mesh = meshBuffer[meshId];
float3 barycentrics = float3(1.0 - bary2.x - bary2.y, bary2.x, bary2.y);
StructuredBuffer<BLASVertex> vertexBuffer = ResourceDescriptorHeap[instance.vertexBufferIndex];
StructuredBuffer<uint> indexBuffer = ResourceDescriptorHeap[instance.indexBufferIndex];
uint firstIndex = mesh.firstIndex + triangleId * 3;
uint vtxIdx0 = mesh.firstVertex + indexBuffer[firstIndex + 0];
uint vtxIdx1 = mesh.firstVertex + indexBuffer[firstIndex + 1];
uint vtxIdx2 = mesh.firstVertex + indexBuffer[firstIndex + 2];
BLASVertex v0 = vertexBuffer[vtxIdx0];
BLASVertex v1 = vertexBuffer[vtxIdx1];
BLASVertex v2 = vertexBuffer[vtxIdx2];
float2 texCoords = trilerp(v0.texCoords, v1.texCoords, v2.texCoords, barycentrics);
float4 vertexColor = trilerp(UnpackColor(v0.color), UnpackColor(v1.color), UnpackColor(v2.color), barycentrics);
Texture2D texture0 = ResourceDescriptorHeap[mesh.textureIndex];
SamplerState sampler0 = SamplerDescriptorHeap[mesh.samplerIndex];
float4 textureColor = texture0.SampleLevel(sampler0, texCoords, 0);
float4 hitColor = vertexColor * textureColor;
if(mesh.alphaTestMode == 0)
{
float3 blended;
if(mesh.blendBits == (GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE))
{
blended = lerp(light, hitColor.rgb, Brightness(hitColor.rgb));
}
else
{
blended = Blend(hitColor, float4(light, 1), mesh.blendBits).rgb;
}
if(all(blended == light))
{
return CLASS_INVISIBLE;
}
light = blended;
return CLASS_TRANSLUCENT;
}
if(FailsAlphaTest(hitColor.a, mesh.alphaTestMode))
{
return CLASS_INVISIBLE;
}
return CLASS_OPAQUE;
}
float2 MapSquareToDisk(float2 square01)
{
float radius = sqrt(square01.x);
float angle = square01.y * 2.0 * 3.14159265359;
float2 sinCos;
sincos(angle, sinCos.x, sinCos.y);
float2 result = radius * sinCos;
return result;
}
float3 GetRayDirectionForSphereLight(float2 square01, float3 surfacePos, float3 lightPos, float worldRadius)
{
float3 direction = normalize(lightPos - surfacePos);
float radius = worldRadius / length(lightPos - surfacePos);
float2 pointInDisk = MapSquareToDisk(square01) * radius;
float3 tangent = normalize(cross(direction, float3(0, 1, 0)));
float3 bitangent = normalize(cross(tangent, direction));
float3 result = normalize(direction + pointInDisk.x * tangent + pointInDisk.y * bitangent);
return result;
}
// true when fully in shadow
bool TraceShadowRay(
out float t, inout float3 light,
RaytracingAccelerationStructure rtas, StructuredBuffer<TLASInstance> instBuffer,
float3 position, float3 direction, float dist)
{
RayDesc ray;
ray.Origin = position;
ray.Direction = direction;
ray.TMin = 0.0;
ray.TMax = dist;
t = 0.0;
float translucentT = 0.0;
RayQuery<RAY_FLAG_NONE> q;
q.TraceRayInline(rtas, RAY_FLAG_NONE, 0xFF, ray);
while(q.Proceed())
{
if(q.CandidateType() == CANDIDATE_NON_OPAQUE_TRIANGLE)
{
uint type = ClassifyNonOpaqueTriangle(
light,
instBuffer,
q.CandidateInstanceIndex(),
q.CandidateGeometryIndex(),
q.CandidatePrimitiveIndex(),
q.CandidateTriangleBarycentrics(),
q.CandidateTriangleFrontFace());
if(type == CLASS_OPAQUE)
{
q.CommitNonOpaqueTriangleHit();
}
else if(type == CLASS_TRANSLUCENT)
{
translucentT = q.CandidateTriangleRayT();
t = translucentT;
}
}
}
if(q.CommittedStatus() == COMMITTED_TRIANGLE_HIT)
{
t = q.CommittedRayT();
}
if(q.CommittedStatus() == COMMITTED_TRIANGLE_HIT && t > translucentT)
{
return true;
}
return false;
}
// true when fully in shadow
bool TraceShadowRayOpaqueOnly(
out float t, inout float3 light,
RaytracingAccelerationStructure rtas, StructuredBuffer<TLASInstance> instBuffer,
float3 position, float3 direction, float dist)
{
RayDesc ray;
ray.Origin = position;
ray.Direction = direction;
ray.TMin = 0.0;
ray.TMax = dist;
t = 0.0;
bool keepLight = false;
RayQuery<RAY_FLAG_CULL_NON_OPAQUE> q;
q.TraceRayInline(rtas, RAY_FLAG_NONE, 0xFF, ray);
q.Proceed();
if(q.CommittedStatus() == COMMITTED_TRIANGLE_HIT)
{
t = q.CommittedRayT();
return true;
}
return false;
}
float4 ps(VOut input) : SV_Target
{
SceneView scene = GetSceneView();
RaytracingAccelerationStructure rtas = ResourceDescriptorHeap[scene.tlasBufferIndex];
Texture2D<float2> normalTexture = ResourceDescriptorHeap[scene.normalTextureIndex];
Texture2D shadingPositionTexture = ResourceDescriptorHeap[scene.shadingPositionTextureIndex];
StructuredBuffer<TLASInstance> tlasInstanceBuffer = ResourceDescriptorHeap[scene.tlasInstanceBufferIndex];
Texture2D blueNoiseTexture = ResourceDescriptorHeap[blueNoiseTextureIndex];
uint2 blueNoiseTextureSize;
blueNoiseTexture.GetDimensions(blueNoiseTextureSize.x, blueNoiseTextureSize.y);
uint3 tc = uint3(input.position.xy, 0);
float3 normalWS = normalize(OctDecode(normalTexture.Load(tc)));
float3 positionWS = shadingPositionTexture.Load(tc).xyz;
float error = 0.0;
float3 pixelAccum = float3(0, 0, 0);
for(uint i = 0; i < scene.lightCount; i++)
{
float3 lightPosition = scene.lights[i].position;
float dist = distance(positionWS, lightPosition);
float radius = scene.lights[i].radius;
if(dist >= radius)
{
continue;
}
float innerRadius = radius / 100.0;
float intensity = saturate(1.0 - dist / radius);
float3 lightDir = normalize(lightPosition - positionWS);
float3 lightRaw = scene.lights[i].color * intensity * max(dot(normalWS, lightDir), 0.0);
const uint SampleCount = 4;
float3 lightAccum = float3(0, 0, 0);
for(uint r = 0; r < SampleCount; r++)
{
float3 light = lightRaw;
uint2 pos = uint2(input.position.xy) + uint2(r * 17, r * 13 + 7);
uint2 tc = pos % blueNoiseTextureSize;
float2 square01 = blueNoiseTexture.Load(uint3(tc, 0)).xy;
float3 dir = GetRayDirectionForSphereLight(square01, positionWS, lightPosition, innerRadius);
float t;
bool inShadow = TraceShadowRay(t, light, rtas, tlasInstanceBuffer, positionWS, dir, dist);
error = max(error, t / radius);
if(inShadow)
{
continue;
}
lightAccum += light;
}
pixelAccum += lightAccum / float(SampleCount);
}
float4 result = float4(pixelAccum, saturate(error));
return result;
}