mirror of
https://bitbucket.org/CPMADevs/cnq3
synced 2024-12-03 09:22:57 +00:00
a76dba5cfb
- brightness-corrected ImGUI drawing - upgraded shader code to HLSL 2021 - vertex normals drawing
256 lines
7.7 KiB
HLSL
256 lines
7.7 KiB
HLSL
/*
|
|
===========================================================================
|
|
Copyright (C) 2024 Gian 'myT' Schellenbaum
|
|
|
|
This file is part of Challenge Quake 3 (CNQ3).
|
|
|
|
Challenge Quake 3 is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Challenge Quake 3 is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Challenge Quake 3. If not, see <https://www.gnu.org/licenses/>.
|
|
===========================================================================
|
|
*/
|
|
// direct lighting from dynamic lights
|
|
|
|
|
|
#include "common.hlsli"
|
|
#include "fullscreen.hlsli"
|
|
#include "raytracing.h.hlsli"
|
|
#include "scene_view.h.hlsli"
|
|
#include "alpha_test.h.hlsli"
|
|
|
|
|
|
cbuffer RootConstants
|
|
{
|
|
uint blueNoiseTextureIndex;
|
|
};
|
|
|
|
#define CLASS_OPAQUE 0u
|
|
#define CLASS_INVISIBLE 1u
|
|
#define CLASS_TRANSLUCENT 2u
|
|
|
|
uint ClassifyNonOpaqueTriangle(inout float3 light, StructuredBuffer<TLASInstance> tlasInstanceBuffer, uint instanceId, uint meshId, uint triangleId, float2 bary2, bool frontFace)
|
|
{
|
|
TLASInstance instance = tlasInstanceBuffer[instanceId];
|
|
#if 0
|
|
// @TODO: is this needed or not?
|
|
// cull mode: 0 is front-sided, 1 is back-sided
|
|
if((frontFace && instance.cullMode == 1) ||
|
|
(!frontFace && instance.cullMode == 0))
|
|
{
|
|
return CLASS_INVISIBLE;
|
|
}
|
|
#endif
|
|
StructuredBuffer<BLASMesh> meshBuffer = ResourceDescriptorHeap[instance.meshBufferIndex];
|
|
BLASMesh mesh = meshBuffer[meshId];
|
|
float3 barycentrics = float3(1.0 - bary2.x - bary2.y, bary2.x, bary2.y);
|
|
StructuredBuffer<BLASVertex> vertexBuffer = ResourceDescriptorHeap[instance.vertexBufferIndex];
|
|
StructuredBuffer<uint> indexBuffer = ResourceDescriptorHeap[instance.indexBufferIndex];
|
|
uint firstIndex = mesh.firstIndex + triangleId * 3;
|
|
uint vtxIdx0 = mesh.firstVertex + indexBuffer[firstIndex + 0];
|
|
uint vtxIdx1 = mesh.firstVertex + indexBuffer[firstIndex + 1];
|
|
uint vtxIdx2 = mesh.firstVertex + indexBuffer[firstIndex + 2];
|
|
BLASVertex v0 = vertexBuffer[vtxIdx0];
|
|
BLASVertex v1 = vertexBuffer[vtxIdx1];
|
|
BLASVertex v2 = vertexBuffer[vtxIdx2];
|
|
float2 texCoords = trilerp(v0.texCoords, v1.texCoords, v2.texCoords, barycentrics);
|
|
float4 vertexColor = trilerp(UnpackColor(v0.color), UnpackColor(v1.color), UnpackColor(v2.color), barycentrics);
|
|
Texture2D texture0 = ResourceDescriptorHeap[mesh.textureIndex];
|
|
SamplerState sampler0 = SamplerDescriptorHeap[mesh.samplerIndex];
|
|
float4 textureColor = texture0.SampleLevel(sampler0, texCoords, 0);
|
|
float4 hitColor = vertexColor * textureColor;
|
|
if(mesh.alphaTestMode == 0)
|
|
{
|
|
float3 blended;
|
|
if(mesh.blendBits == (GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE))
|
|
{
|
|
blended = lerp(light, hitColor.rgb, Brightness(hitColor.rgb));
|
|
}
|
|
else
|
|
{
|
|
blended = Blend(hitColor, float4(light, 1), mesh.blendBits).rgb;
|
|
}
|
|
if(all(blended == light))
|
|
{
|
|
return CLASS_INVISIBLE;
|
|
}
|
|
light = blended;
|
|
return CLASS_TRANSLUCENT;
|
|
}
|
|
if(FailsAlphaTest(hitColor.a, mesh.alphaTestMode))
|
|
{
|
|
return CLASS_INVISIBLE;
|
|
}
|
|
return CLASS_OPAQUE;
|
|
}
|
|
|
|
float2 MapSquareToDisk(float2 square01)
|
|
{
|
|
float radius = sqrt(square01.x);
|
|
float angle = square01.y * 2.0 * 3.14159265359;
|
|
float2 sinCos;
|
|
sincos(angle, sinCos.x, sinCos.y);
|
|
float2 result = radius * sinCos;
|
|
|
|
return result;
|
|
}
|
|
|
|
float3 GetRayDirectionForSphereLight(float2 square01, float3 surfacePos, float3 lightPos, float worldRadius)
|
|
{
|
|
float3 direction = normalize(lightPos - surfacePos);
|
|
float radius = worldRadius / length(lightPos - surfacePos);
|
|
float2 pointInDisk = MapSquareToDisk(square01) * radius;
|
|
float3 tangent = normalize(cross(direction, float3(0, 1, 0)));
|
|
float3 bitangent = normalize(cross(tangent, direction));
|
|
float3 result = normalize(direction + pointInDisk.x * tangent + pointInDisk.y * bitangent);
|
|
|
|
return result;
|
|
}
|
|
|
|
// true when fully in shadow
|
|
bool TraceShadowRay(
|
|
out float t, inout float3 light,
|
|
RaytracingAccelerationStructure rtas, StructuredBuffer<TLASInstance> instBuffer,
|
|
float3 position, float3 direction, float dist)
|
|
{
|
|
RayDesc ray;
|
|
ray.Origin = position;
|
|
ray.Direction = direction;
|
|
ray.TMin = 0.0;
|
|
ray.TMax = dist;
|
|
|
|
t = 0.0;
|
|
float translucentT = 0.0;
|
|
RayQuery<RAY_FLAG_NONE> q;
|
|
q.TraceRayInline(rtas, RAY_FLAG_NONE, 0xFF, ray);
|
|
while(q.Proceed())
|
|
{
|
|
if(q.CandidateType() == CANDIDATE_NON_OPAQUE_TRIANGLE)
|
|
{
|
|
uint type = ClassifyNonOpaqueTriangle(
|
|
light,
|
|
instBuffer,
|
|
q.CandidateInstanceIndex(),
|
|
q.CandidateGeometryIndex(),
|
|
q.CandidatePrimitiveIndex(),
|
|
q.CandidateTriangleBarycentrics(),
|
|
q.CandidateTriangleFrontFace());
|
|
if(type == CLASS_OPAQUE)
|
|
{
|
|
q.CommitNonOpaqueTriangleHit();
|
|
}
|
|
else if(type == CLASS_TRANSLUCENT)
|
|
{
|
|
translucentT = q.CandidateTriangleRayT();
|
|
t = translucentT;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(q.CommittedStatus() == COMMITTED_TRIANGLE_HIT)
|
|
{
|
|
t = q.CommittedRayT();
|
|
}
|
|
|
|
if(q.CommittedStatus() == COMMITTED_TRIANGLE_HIT && t > translucentT)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// true when fully in shadow
|
|
bool TraceShadowRayOpaqueOnly(
|
|
out float t, inout float3 light,
|
|
RaytracingAccelerationStructure rtas, StructuredBuffer<TLASInstance> instBuffer,
|
|
float3 position, float3 direction, float dist)
|
|
{
|
|
RayDesc ray;
|
|
ray.Origin = position;
|
|
ray.Direction = direction;
|
|
ray.TMin = 0.0;
|
|
ray.TMax = dist;
|
|
|
|
t = 0.0;
|
|
bool keepLight = false;
|
|
RayQuery<RAY_FLAG_CULL_NON_OPAQUE> q;
|
|
q.TraceRayInline(rtas, RAY_FLAG_NONE, 0xFF, ray);
|
|
q.Proceed();
|
|
if(q.CommittedStatus() == COMMITTED_TRIANGLE_HIT)
|
|
{
|
|
t = q.CommittedRayT();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
float4 ps(VOut input) : SV_Target
|
|
{
|
|
SceneView scene = GetSceneView();
|
|
RaytracingAccelerationStructure rtas = ResourceDescriptorHeap[scene.tlasBufferIndex];
|
|
Texture2D<float2> normalTexture = ResourceDescriptorHeap[scene.normalTextureIndex];
|
|
Texture2D shadingPositionTexture = ResourceDescriptorHeap[scene.shadingPositionTextureIndex];
|
|
StructuredBuffer<TLASInstance> tlasInstanceBuffer = ResourceDescriptorHeap[scene.tlasInstanceBufferIndex];
|
|
Texture2D blueNoiseTexture = ResourceDescriptorHeap[blueNoiseTextureIndex];
|
|
|
|
uint2 blueNoiseTextureSize;
|
|
blueNoiseTexture.GetDimensions(blueNoiseTextureSize.x, blueNoiseTextureSize.y);
|
|
|
|
uint3 tc = uint3(input.position.xy, 0);
|
|
float3 normalWS = normalize(OctDecode(normalTexture.Load(tc)));
|
|
float3 positionWS = shadingPositionTexture.Load(tc).xyz;
|
|
|
|
float error = 0.0;
|
|
float3 pixelAccum = float3(0, 0, 0);
|
|
for(uint i = 0; i < scene.lightCount; i++)
|
|
{
|
|
float3 lightPosition = scene.lights[i].position;
|
|
float dist = distance(positionWS, lightPosition);
|
|
float radius = scene.lights[i].radius;
|
|
if(dist >= radius)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
float innerRadius = radius / 100.0;
|
|
float intensity = saturate(1.0 - dist / radius);
|
|
float3 lightDir = normalize(lightPosition - positionWS);
|
|
float3 lightRaw = scene.lights[i].color * intensity * max(dot(normalWS, lightDir), 0.0);
|
|
const uint SampleCount = 4;
|
|
|
|
float3 lightAccum = float3(0, 0, 0);
|
|
for(uint r = 0; r < SampleCount; r++)
|
|
{
|
|
float3 light = lightRaw;
|
|
uint2 pos = uint2(input.position.xy) + uint2(r * 17, r * 13 + 7);
|
|
uint2 tc = pos % blueNoiseTextureSize;
|
|
float2 square01 = blueNoiseTexture.Load(uint3(tc, 0)).xy;
|
|
float3 dir = GetRayDirectionForSphereLight(square01, positionWS, lightPosition, innerRadius);
|
|
float t;
|
|
bool inShadow = TraceShadowRay(t, light, rtas, tlasInstanceBuffer, positionWS, dir, dist);
|
|
error = max(error, t / radius);
|
|
if(inShadow)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
lightAccum += light;
|
|
}
|
|
|
|
pixelAccum += lightAccum / float(SampleCount);
|
|
}
|
|
|
|
float4 result = float4(pixelAccum, saturate(error));
|
|
|
|
return result;
|
|
}
|