zmusic/source/mididevices/music_alsa_mididevice.cpp

497 lines
12 KiB
C++

/*
** Provides an ALSA implementation of a MIDI output device.
**
**---------------------------------------------------------------------------
** Copyright 2008-2010 Randy Heit
** Copyright 2020 Petr Mrazek
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#if defined __linux__ && defined HAVE_SYSTEM_MIDI
#include <thread>
#include <mutex>
#include <condition_variable>
#include "mididevice.h"
#include "zmusic/m_swap.h"
#include "zmusic/mus2midi.h"
#include "zmusic_internal.h"
#include "music_alsa_state.h"
#include <alsa/asoundlib.h>
namespace {
enum class EventType {
Null,
Action
};
struct EventState {
int ticks = 0;
snd_seq_event_t data;
int size_of = 0;
void Clear() {
ticks = 0;
snd_seq_ev_clear(&data);
size_of = 0;
}
};
class AlsaMIDIDevice : public MIDIDevice
{
public:
AlsaMIDIDevice(int dev_id);
~AlsaMIDIDevice();
int Open() override;
void Close() override;
bool IsOpen() const override;
int GetTechnology() const override;
int SetTempo(int tempo) override;
int SetTimeDiv(int timediv) override;
int StreamOut(MidiHeader *data) override;
int StreamOutSync(MidiHeader *data) override;
int Resume() override;
void Stop() override;
bool FakeVolume() override {
// Not sure if we even can control the volume this way with Alsa, so make it fake.
return true;
};
bool Pause(bool paused) override;
void InitPlayback() override;
bool Update() override;
void PrecacheInstruments(const uint16_t *instruments, int count) override {}
bool CanHandleSysex() const override
{
// Assume we can, let Alsa sort it out. We do not truly have full control.
return true;
}
void SendStopEvents();
void SetExit(bool exit);
bool WaitForExit(std::chrono::microseconds usec, snd_seq_queue_status_t * status);
EventType PullEvent(EventState & state);
void PumpEvents();
protected:
AlsaSequencer &sequencer;
MidiHeader *Events = nullptr;
bool Started = false;
uint32_t Position = 0;
const static int IntendedPortId = 0;
bool Connected = false;
int PortId = -1;
int QueueId = -1;
int DestinationClientId;
int DestinationPortId;
int Technology;
int Tempo = 480000;
int TimeDiv = 480;
std::thread PlayerThread;
bool Exit = false;
std::mutex ExitLock;
std::condition_variable ExitCond;
};
}
AlsaMIDIDevice::AlsaMIDIDevice(int dev_id) : sequencer(AlsaSequencer::Get())
{
auto & internalDevices = sequencer.GetInternalDevices();
auto & device = internalDevices.at(dev_id);
DestinationClientId = device.ClientID;
DestinationPortId = device.PortNumber;
Technology = device.GetDeviceClass();
}
AlsaMIDIDevice::~AlsaMIDIDevice()
{
Close();
}
int AlsaMIDIDevice::Open()
{
if (!sequencer.IsOpen()) {
return 1;
}
if(PortId < 0)
{
snd_seq_port_info_t *pinfo;
snd_seq_port_info_alloca(&pinfo);
snd_seq_port_info_set_port(pinfo, IntendedPortId);
snd_seq_port_info_set_port_specified(pinfo, 1);
snd_seq_port_info_set_name(pinfo, "ZMusic Program Music");
snd_seq_port_info_set_capability(pinfo, 0);
snd_seq_port_info_set_type(pinfo, SND_SEQ_PORT_TYPE_MIDI_GENERIC | SND_SEQ_PORT_TYPE_APPLICATION);
int err = 0;
err = snd_seq_create_port(sequencer.handle, pinfo);
PortId = IntendedPortId;
}
if (QueueId < 0)
{
QueueId = snd_seq_alloc_named_queue(sequencer.handle, "ZMusic Program Queue");
}
if (!Connected) {
Connected = (snd_seq_connect_to(sequencer.handle, PortId, DestinationClientId, DestinationPortId) == 0);
}
return 0;
}
void AlsaMIDIDevice::Close()
{
if(Connected) {
snd_seq_disconnect_to(sequencer.handle, PortId, DestinationClientId, DestinationPortId);
Connected = false;
}
if(QueueId >= 0) {
snd_seq_free_queue(sequencer.handle, QueueId);
QueueId = -1;
}
if(PortId >= 0) {
snd_seq_delete_port(sequencer.handle, PortId);
PortId = -1;
}
}
bool AlsaMIDIDevice::IsOpen() const
{
return Connected;
}
int AlsaMIDIDevice::GetTechnology() const
{
return Technology;
}
int AlsaMIDIDevice::SetTempo(int tempo)
{
Tempo = tempo;
return 0;
}
int AlsaMIDIDevice::SetTimeDiv(int timediv)
{
TimeDiv = timediv;
return 0;
}
EventType AlsaMIDIDevice::PullEvent(EventState & state) {
state.Clear();
if(!Events) {
Callback(CallbackData);
if(!Events) {
return EventType::Null;
}
}
if (Position >= Events->dwBytesRecorded)
{
Events = Events->lpNext;
Position = 0;
if (Callback != NULL)
{
Callback(CallbackData);
}
if(!Events) {
return EventType::Null;
}
}
uint32_t *event = (uint32_t *)(Events->lpData + Position);
state.ticks = event[0];
// Advance to next event.
if (event[2] < 0x80000000)
{ // Short message
state.size_of = 12;
}
else
{ // Long message
state.size_of = 12 + ((MEVENT_EVENTPARM(event[2]) + 3) & ~3);
}
if (MEVENT_EVENTTYPE(event[2]) == MEVENT_TEMPO) {
int tempo = MEVENT_EVENTPARM(event[2]);
if(Tempo != tempo) {
Tempo = tempo;
snd_seq_change_queue_tempo(sequencer.handle, QueueId, Tempo, &state.data);
return EventType::Action;
}
}
else if (MEVENT_EVENTTYPE(event[2]) == MEVENT_LONGMSG) {
// SysEx messages...
uint8_t * data = (uint8_t *)&event[3];
int len = MEVENT_EVENTPARM(event[2]);
if (len > 1 && (data[0] == 0xF0 || data[0] == 0xF7))
{
snd_seq_ev_set_sysex(&state.data, len, (void *)data);
return EventType::Action;
}
}
else if (MEVENT_EVENTTYPE(event[2]) == 0) {
// Short MIDI event
int command = event[2] & 0xF0;
int channel = event[2] & 0x0F;
int parm1 = (event[2] >> 8) & 0x7f;
int parm2 = (event[2] >> 16) & 0x7f;
switch (command)
{
case MIDI_NOTEOFF:
snd_seq_ev_set_noteoff(&state.data, channel, parm1, parm2);
return EventType::Action;
case MIDI_NOTEON:
snd_seq_ev_set_noteon(&state.data, channel, parm1, parm2);
return EventType::Action;
case MIDI_POLYPRESS:
snd_seq_ev_set_keypress(&state.data, channel, parm1, parm2);
return EventType::Action;
case MIDI_CTRLCHANGE:
snd_seq_ev_set_controller(&state.data, channel, parm1, parm2);
return EventType::Action;
case MIDI_PRGMCHANGE:
snd_seq_ev_set_pgmchange(&state.data, channel, parm1);
return EventType::Action;
case MIDI_CHANPRESS:
snd_seq_ev_set_chanpress(&state.data, channel, parm1);
return EventType::Action;
case MIDI_PITCHBEND: {
long bend = ((long)parm1 + (long)(parm2 << 7)) - 0x2000;
snd_seq_ev_set_pitchbend(&state.data, channel, bend);
return EventType::Action;
}
default:
break;
}
}
// We didn't really recognize the event, treat it as a NOP
state.data.type = SND_SEQ_EVENT_NONE;
snd_seq_ev_set_fixed(&state.data);
return EventType::Action;
}
void AlsaMIDIDevice::SetExit(bool exit) {
std::unique_lock<std::mutex> lock(ExitLock);
if(exit != Exit) {
Exit = exit;
ExitCond.notify_all();
}
}
bool AlsaMIDIDevice::WaitForExit(std::chrono::microseconds usec, snd_seq_queue_status_t * status) {
std::unique_lock<std::mutex> lock(ExitLock);
if(Exit) {
return true;
}
ExitCond.wait_for(lock, usec);
if(Exit) {
return true;
}
snd_seq_get_queue_status(sequencer.handle, QueueId, status);
return false;
}
/*
* Pumps events from the input to the output in a worker thread.
* It tries to keep the amount of events (time-wise) in the ALSA sequencer queue to be between 40 and 80ms by sleeping where necessary.
* This means Alsa can play them safely without running out of things to do, and we have good control over the events themselves (volume, pause, etc.).
*/
void AlsaMIDIDevice::PumpEvents() {
const std::chrono::microseconds pump_step(40000);
// TODO: fill in error handling throughout this.
snd_seq_queue_tempo_t *tempo;
snd_seq_queue_tempo_alloca(&tempo);
snd_seq_queue_tempo_set_tempo(tempo, Tempo);
snd_seq_queue_tempo_set_ppq(tempo, TimeDiv);
snd_seq_set_queue_tempo(sequencer.handle, QueueId, tempo);
snd_seq_start_queue(sequencer.handle, QueueId, NULL);
snd_seq_drain_output(sequencer.handle);
int buffer_ticks = 0;
EventState event;
snd_seq_queue_status_t *status;
snd_seq_queue_status_malloc(&status);
while (true) {
auto type = PullEvent(event);
// if we reach the end of events, await our doom at a steady rate while looking for more events
if(type == EventType::Null) {
if(WaitForExit(pump_step, status)) {
break;
}
continue;
}
// Figure out if we should sleep (the event is too far in the future for us to care), and for how long
int next_event_tick = buffer_ticks + event.ticks;
int queue_tick = snd_seq_queue_status_get_tick_time(status);
int tick_delta = next_event_tick - queue_tick;
auto usecs = std::chrono::microseconds(tick_delta * Tempo / TimeDiv);
auto schedule_time = std::max(std::chrono::microseconds(0), usecs - pump_step);
if(schedule_time >= pump_step) {
if(WaitForExit(schedule_time, status)) {
break;
}
continue;
}
if (tick_delta < 0) {
ZMusic_Printf(ZMUSIC_MSG_ERROR, "Alsa sequencer underrun: %d ticks!\n", tick_delta);
}
// We found an event worthy of sending to the sequencer
snd_seq_ev_set_source(&event.data, PortId);
snd_seq_ev_set_subs(&event.data);
snd_seq_ev_schedule_tick(&event.data, QueueId, false, buffer_ticks + event.ticks);
int result = snd_seq_event_output(sequencer.handle, &event.data);
if(result < 0) {
ZMusic_Printf(ZMUSIC_MSG_ERROR, "Alsa sequencer did not accept event: error %d!\n", result);
if(WaitForExit(pump_step, status)) {
break;
}
continue;
}
buffer_ticks += event.ticks;
Position += event.size_of;
snd_seq_drain_output(sequencer.handle);
}
snd_seq_queue_status_free(status);
snd_seq_drop_output(sequencer.handle);
// FIXME: the event source should give use these, but it doesn't.
{
for (int channel = 0; channel < 16; ++channel)
{
snd_seq_event_t ev;
snd_seq_ev_clear(&ev);
snd_seq_ev_set_source(&ev, PortId);
snd_seq_ev_set_subs(&ev);
snd_seq_ev_schedule_tick(&ev, QueueId, true, 0);
snd_seq_ev_set_controller(&ev, channel, MIDI_CTL_ALL_NOTES_OFF, 0);
snd_seq_event_output(sequencer.handle, &ev);
snd_seq_ev_set_controller(&ev, channel, MIDI_CTL_RESET_CONTROLLERS, 0);
snd_seq_event_output(sequencer.handle, &ev);
}
snd_seq_drain_output(sequencer.handle);
snd_seq_sync_output_queue(sequencer.handle);
}
snd_seq_stop_queue(sequencer.handle, QueueId, NULL);
snd_seq_drain_output(sequencer.handle);
}
int AlsaMIDIDevice::Resume()
{
if(!Connected) {
return 1;
}
SetExit(false);
PlayerThread = std::thread(&AlsaMIDIDevice::PumpEvents, this);
return 0;
}
void AlsaMIDIDevice::InitPlayback()
{
SetExit(false);
}
void AlsaMIDIDevice::Stop()
{
SetExit(true);
PlayerThread.join();
}
bool AlsaMIDIDevice::Pause(bool paused)
{
// TODO: implement
return false;
}
int AlsaMIDIDevice::StreamOut(MidiHeader *header)
{
header->lpNext = NULL;
if (Events == NULL)
{
Events = header;
Position = 0;
}
else
{
MidiHeader **p;
for (p = &Events; *p != NULL; p = &(*p)->lpNext)
{ }
*p = header;
}
return 0;
}
int AlsaMIDIDevice::StreamOutSync(MidiHeader *header)
{
return StreamOut(header);
}
bool AlsaMIDIDevice::Update()
{
return true;
}
MIDIDevice *CreateAlsaMIDIDevice(int mididevice)
{
return new AlsaMIDIDevice(mididevice);
}
#endif