raze/source/common/rendering/hwrenderer/data/hw_aabbtree.cpp
Mitchell Richters 828e46a8da - Remove the TVector2 (const TVector3<vec_t> &other) constructor.
* This narrowing constructor was causing a problem with a `clamp()` overload in the next commit.
* Believe this is a product of a by-gone time before we had the `XY()` method on `TVector3<T>` objects.
2023-10-03 23:07:44 +11:00

166 lines
5.2 KiB
C++

//
//---------------------------------------------------------------------------
// AABB-tree used for ray testing
// Copyright(C) 2017 Magnus Norddahl
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
#include <algorithm>
#include "hw_aabbtree.h"
namespace hwrenderer
{
TArray<int> LevelAABBTree::FindNodePath(unsigned int line, unsigned int node)
{
const AABBTreeNode &n = nodes[node];
if (n.aabb_left > treelines[line].x || n.aabb_right < treelines[line].x ||
n.aabb_top > treelines[line].y || n.aabb_bottom < treelines[line].y)
{
return {};
}
TArray<int> path;
if (n.line_index == -1)
{
path = FindNodePath(line, n.left_node);
if (path.Size() == 0)
path = FindNodePath(line, n.right_node);
if (path.Size())
path.Push(node);
}
else if (n.line_index == (int)line)
{
path.Push(node);
}
return path;
}
double LevelAABBTree::RayTest(const DVector2 &ray_start, const DVector2 &ray_end)
{
// Precalculate some of the variables used by the ray/line intersection test
DVector2 raydelta = ray_end - ray_start;
double raydist2 = raydelta | raydelta;
DVector2 raynormal = DVector2(raydelta.Y, -raydelta.X);
double rayd = raynormal | ray_start;
if (raydist2 < 1.0)
return 1.0f;
double hit_fraction = 1.0;
// Walk the tree nodes
int stack[32];
int stack_pos = 1;
stack[0] = nodes.Size() - 1; // root node is the last node in the list
while (stack_pos > 0)
{
int node_index = stack[stack_pos - 1];
if (!OverlapRayAABB(ray_start, ray_end, nodes[node_index]))
{
// If the ray doesn't overlap this node's AABB we're done for this subtree
stack_pos--;
}
else if (nodes[node_index].line_index != -1) // isLeaf(node_index)
{
// We reached a leaf node. Do a ray/line intersection test to see if we hit the line.
hit_fraction = std::min(IntersectRayLine(ray_start, ray_end, nodes[node_index].line_index, raydelta, rayd, raydist2), hit_fraction);
stack_pos--;
}
else if (stack_pos == 32)
{
stack_pos--; // stack overflow - tree is too deep!
}
else
{
// The ray overlaps the node's AABB. Examine its child nodes.
stack[stack_pos - 1] = nodes[node_index].left_node;
stack[stack_pos] = nodes[node_index].right_node;
stack_pos++;
}
}
return hit_fraction;
}
bool LevelAABBTree::OverlapRayAABB(const DVector2 &ray_start2d, const DVector2 &ray_end2d, const AABBTreeNode &node)
{
// To do: simplify test to use a 2D test
DVector3 ray_start = DVector3(ray_start2d, 0.0);
DVector3 ray_end = DVector3(ray_end2d, 0.0);
DVector3 aabb_min = DVector3(node.aabb_left, node.aabb_top, -1.0);
DVector3 aabb_max = DVector3(node.aabb_right, node.aabb_bottom, 1.0);
// Standard 3D ray/AABB overlapping test.
// The details for the math here can be found in Real-Time Rendering, 3rd Edition.
// We could use a 2D test here instead, which would probably simplify the math.
DVector3 c = (ray_start + ray_end) * 0.5f;
DVector3 w = ray_end - c;
DVector3 h = (aabb_max - aabb_min) * 0.5f; // aabb.extents();
c -= (aabb_max + aabb_min) * 0.5f; // aabb.center();
DVector3 v = DVector3(fabs(w.X), fabs(w.Y), fabs(w.Z));
if (fabs(c.X) > v.X + h.X || fabs(c.Y) > v.Y + h.Y || fabs(c.Z) > v.Z + h.Z)
return false; // disjoint;
if (fabs(c.Y * w.Z - c.Z * w.Y) > h.Y * v.Z + h.Z * v.Y ||
fabs(c.X * w.Z - c.Z * w.X) > h.X * v.Z + h.Z * v.X ||
fabs(c.X * w.Y - c.Y * w.X) > h.X * v.Y + h.Y * v.X)
return false; // disjoint;
return true; // overlap;
}
double LevelAABBTree::IntersectRayLine(const DVector2 &ray_start, const DVector2 &ray_end, int line_index, const DVector2 &raydelta, double rayd, double raydist2)
{
// Check if two line segments intersects (the ray and the line).
// The math below does this by first finding the fractional hit for an infinitely long ray line.
// If that hit is within the line segment (0 to 1 range) then it calculates the fractional hit for where the ray would hit.
//
// This algorithm is homemade - I would not be surprised if there's a much faster method out there.
const double epsilon = 0.0000001;
const AABBTreeLine &line = treelines[line_index];
DVector2 raynormal = DVector2(raydelta.Y, -raydelta.X);
DVector2 line_pos(line.x, line.y);
DVector2 line_delta(line.dx, line.dy);
double den = raynormal | line_delta;
if (fabs(den) > epsilon)
{
double t_line = (rayd - (raynormal | line_pos)) / den;
if (t_line >= 0.0 && t_line <= 1.0)
{
DVector2 linehitdelta = line_pos + line_delta * t_line - ray_start;
double t = (raydelta | linehitdelta) / raydist2;
return t > 0.0 ? t : 1.0;
}
}
return 1.0;
}
}