raze-gles/source/build/src/mdsprite.cpp
Christoph Oelckers c588cd499a - let GLInstance::Draw set the palette indexing mode.
This can be trivially decided based on the texture type, so there's really no need to let the higher level code deal with this.
2019-10-10 23:14:57 +02:00

2139 lines
66 KiB
C++

//------------------------------------- MD2/MD3 LIBRARY BEGINS -------------------------------------
#ifdef USE_OPENGL
#include "compat.h"
#include "build.h"
#include "pragmas.h"
#include "baselayer.h"
#include "engine_priv.h"
#include "hightile.h"
#include "polymost.h"
#include "texcache.h"
#include "mdsprite.h"
#include "cache1d.h"
#include "kplib.h"
#include "common.h"
#include "palette.h"
#include "textures.h"
#include "bitmap.h"
#include "../../glbackend/glbackend.h"
#include "vfs.h"
static int32_t curextra=MAXTILES;
#define MIN_CACHETIME_PRINT 10
static int32_t addtileP(int32_t model,int32_t tile,int32_t pallet)
{
// tile >= 0 && tile < MAXTILES
UNREFERENCED_PARAMETER(model);
if (curextra==MAXTILES+EXTRATILES-1)
{
initprintf("warning: max EXTRATILES reached\n");
return curextra;
}
if (tile2model[tile].modelid==-1)
{
tile2model[tile].pal=pallet;
return tile;
}
if (tile2model[tile].pal==pallet)
return tile;
while (tile2model[tile].nexttile!=-1)
{
tile=tile2model[tile].nexttile;
if (tile2model[tile].pal==pallet)
return tile;
}
tile2model[tile].nexttile=curextra;
tile2model[curextra].pal=pallet;
return curextra++;
}
int32_t Ptile2tile(int32_t tile,int32_t palette)
{
int t = tile;
while ((tile = tile2model[tile].nexttile) != -1)
if (tile2model[tile].pal == palette)
{
t = tile;
break;
}
return t;
}
#define MODELALLOCGROUP 256
static int32_t nummodelsalloced = 0;
static int32_t maxmodelverts = 0, allocmodelverts = 0;
static int32_t maxmodeltris = 0, allocmodeltris = 0;
static vec3f_t *vertlist = NULL; //temp array to store interpolated vertices for drawing
#ifdef USE_GLEXT
static int32_t allocvbos = 0, curvbo = 0;
static GLuint *vertvbos = NULL;
static GLuint *indexvbos = NULL;
#endif
#ifdef POLYMER
static int32_t *tribuf = NULL;
static int32_t tribufverts = 0;
#endif
static mdmodel_t *mdload(const char *);
static void mdfree(mdmodel_t *);
int32_t globalnoeffect=0;
void freeallmodels()
{
int32_t i;
if (models)
{
for (i=0; i<nextmodelid; i++) mdfree(models[i]);
DO_FREE_AND_NULL(models);
nummodelsalloced = 0;
nextmodelid = 0;
}
Bmemset(tile2model,-1,sizeof(tile2model));
for (i=0; i<MAXTILES; i++)
Bmemset(tile2model[i].hudmem, 0, sizeof(tile2model[i].hudmem));
curextra=MAXTILES;
if (vertlist)
{
DO_FREE_AND_NULL(vertlist);
allocmodelverts = maxmodelverts = 0;
allocmodeltris = maxmodeltris = 0;
}
#ifdef POLYMER
DO_FREE_AND_NULL(tribuf);
#endif
}
// Skin texture names can be aliased! This is ugly, but at least correct.
static void nullskintexids(FHardwareTexture *texid)
{
int32_t i, j;
for (i=0; i<nextmodelid; i++)
{
mdmodel_t *m = models[i];
if (m->mdnum == 2 || m->mdnum == 3)
{
mdskinmap_t *sk;
md2model_t *m2 = (md2model_t *)m;
for (j=0; j < m2->numskins * HICTINT_MEMORY_COMBINATIONS; j++)
if (m2->texid[j] == texid)
m2->texid[j] = nullptr;
for (sk=m2->skinmap; sk; sk=sk->next)
for (j=0; j < HICTINT_MEMORY_COMBINATIONS; j++)
if (sk->texid[j] == texid)
sk->texid[j] = nullptr;
}
}
}
void clearskins(int32_t type)
{
int32_t i, j;
for (i=0; i<nextmodelid; i++)
{
mdmodel_t *m = models[i];
if (m->mdnum == 1)
{
voxmodel_t *v = (voxmodel_t *)m;
for (j=0; j<MAXPALOOKUPS; j++)
if (v->texid[j])
{
delete v->texid[j];
v->texid[j] = nullptr;
}
}
else if ((m->mdnum == 2 || m->mdnum == 3) && type == INVALIDATE_ALL)
{
mdskinmap_t *sk;
md2model_t *m2 = (md2model_t *)m;
for (j=0; j < m2->numskins * HICTINT_MEMORY_COMBINATIONS; j++)
if (m2->texid[j])
{
auto otexid = m2->texid[j];
delete m2->texid[j];
m2->texid[j] = nullptr;
nullskintexids(otexid);
}
for (sk=m2->skinmap; sk; sk=sk->next)
for (j=0; j < HICTINT_MEMORY_COMBINATIONS; j++)
if (sk->texid[j])
{
auto otexid = sk->texid[j];
delete sk->texid[j];
sk->texid[j] = nullptr;
nullskintexids(otexid);
}
}
}
for (i=0; i<MAXVOXELS; i++)
{
voxmodel_t *v = voxmodels[i];
if (!v) continue;
for (j=0; j<MAXPALOOKUPS; j++)
if (v->texid[j])
{
delete v->texid[j];
v->texid[j] = nullptr;
}
}
}
void mdinit()
{
freeallmodels();
mdinited = 1;
}
int32_t md_loadmodel(const char *fn)
{
mdmodel_t *vm, **ml;
if (!mdinited) mdinit();
if (nextmodelid >= nummodelsalloced)
{
ml = (mdmodel_t **)Xrealloc(models,(nummodelsalloced+MODELALLOCGROUP)*sizeof(void *));
models = ml; nummodelsalloced += MODELALLOCGROUP;
}
vm = mdload(fn); if (!vm) return -1;
models[nextmodelid++] = vm;
return nextmodelid-1;
}
int32_t md_setmisc(int32_t modelid, float scale, int32_t shadeoff, float zadd, float yoffset, int32_t flags)
{
mdmodel_t *m;
if (!mdinited) mdinit();
if ((uint32_t)modelid >= (uint32_t)nextmodelid) return -1;
m = models[modelid];
m->bscale = scale;
m->shadeoff = shadeoff;
m->zadd = zadd;
m->yoffset = yoffset;
m->flags = flags;
return 0;
}
static int32_t framename2index(mdmodel_t *vm, const char *nam)
{
int32_t i = 0;
switch (vm->mdnum)
{
case 2:
{
md2model_t *m = (md2model_t *)vm;
md2frame_t *fr;
for (i=0; i<m->numframes; i++)
{
fr = (md2frame_t *)&m->frames[i*m->framebytes];
if (!Bstrcmp(fr->name, nam)) break;
}
}
break;
case 3:
{
md3model_t *m = (md3model_t *)vm;
for (i=0; i<m->numframes; i++)
if (!Bstrcmp(m->head.frames[i].nam,nam)) break;
}
break;
}
return i;
}
int32_t md_defineframe(int32_t modelid, const char *framename, int32_t tilenume, int32_t skinnum, float smoothduration, int32_t pal)
{
md2model_t *m;
int32_t i;
if (!mdinited) mdinit();
if ((uint32_t)modelid >= (uint32_t)nextmodelid) return -1;
if ((uint32_t)tilenume >= (uint32_t)MAXTILES) return -2;
if (!framename) return -3;
tilenume=addtileP(modelid,tilenume,pal);
m = (md2model_t *)models[modelid];
if (m->mdnum == 1)
{
tile2model[tilenume].modelid = modelid;
tile2model[tilenume].framenum = tile2model[tilenume].skinnum = 0;
return 0;
}
i = framename2index((mdmodel_t *)m,framename);
if (i == m->numframes) return -3; // frame name invalid
tile2model[tilenume].modelid = modelid;
tile2model[tilenume].framenum = i;
tile2model[tilenume].skinnum = skinnum;
tile2model[tilenume].smoothduration = Blrintf((float)UINT16_MAX * smoothduration);
return i;
}
int32_t md_defineanimation(int32_t modelid, const char *framestart, const char *frameend, int32_t fpssc, int32_t flags)
{
md2model_t *m;
mdanim_t ma, *map;
int32_t i;
if (!mdinited) mdinit();
if ((uint32_t)modelid >= (uint32_t)nextmodelid) return -1;
Bmemset(&ma, 0, sizeof(ma));
m = (md2model_t *)models[modelid];
if (m->mdnum < 2) return 0;
//find index of start frame
i = framename2index((mdmodel_t *)m,framestart);
if (i == m->numframes) return -2;
ma.startframe = i;
//find index of finish frame which must trail start frame
i = framename2index((mdmodel_t *)m,frameend);
if (i == m->numframes) return -3;
ma.endframe = i;
ma.fpssc = fpssc;
ma.flags = flags;
map = (mdanim_t *)Xmalloc(sizeof(mdanim_t));
Bmemcpy(map, &ma, sizeof(ma));
map->next = m->animations;
m->animations = map;
return 0;
}
#if 0
// FIXME: CURRENTLY DISABLED: interpolation may access frames we consider 'unused'?
int32_t md_thinoutmodel(int32_t modelid, uint8_t *usedframebitmap)
{
md3model_t *m;
md3surf_t *s;
mdanim_t *anm;
int32_t i, surfi, sub, usedframes;
static int16_t otonframe[1024];
if ((uint32_t)modelid >= (uint32_t)nextmodelid) return -1;
m = (md3model_t *)models[modelid];
if (m->mdnum != 3) return -2;
for (anm=m->animations; anm; anm=anm->next)
{
if (anm->endframe <= anm->startframe)
{
// initprintf("backward anim %d-%d\n", anm->startframe, anm->endframe);
return -3;
}
for (i=anm->startframe; i<anm->endframe; i++)
usedframebitmap[i>>3] |= pow2char[i&7];
}
sub = 0;
for (i=0; i<m->numframes; i++)
{
if (!(usedframebitmap[i>>3]&pow2char[i&7]))
{
sub++;
otonframe[i] = -1;
continue;
}
otonframe[i] = i-sub;
}
usedframes = m->numframes - sub;
if (usedframes==0 || usedframes==m->numframes)
return usedframes;
//// THIN OUT! ////
for (i=0; i<m->numframes; i++)
{
if (otonframe[i]>=0 && otonframe[i] != i)
{
if (m->muladdframes)
Bmemcpy(&m->muladdframes[2*otonframe[i]], &m->muladdframes[2*i], 2*sizeof(vec3f_t));
Bmemcpy(&m->head.frames[otonframe[i]], &m->head.frames[i], sizeof(md3frame_t));
}
}
for (surfi=0; surfi < m->head.numsurfs; surfi++)
{
s = &m->head.surfs[surfi];
for (i=0; i<m->numframes; i++)
if (otonframe[i]>=0 && otonframe[i] != i)
Bmemcpy(&s->xyzn[otonframe[i]*s->numverts], &s->xyzn[i*s->numverts], s->numverts*sizeof(md3xyzn_t));
}
////// tweak frame indices in various places
for (anm=m->animations; anm; anm=anm->next)
{
if (otonframe[anm->startframe]==-1 || otonframe[anm->endframe-1]==-1)
initprintf("md %d WTF: anm %d %d\n", modelid, anm->startframe, anm->endframe);
anm->startframe = otonframe[anm->startframe];
anm->endframe = otonframe[anm->endframe-1];
}
for (i=0; i<MAXTILES+EXTRATILES; i++)
if (tile2model[i].modelid == modelid)
{
if (otonframe[tile2model[i].framenum]==-1)
initprintf("md %d WTF: tile %d, fr %d\n", modelid, i, tile2model[i].framenum);
tile2model[i].framenum = otonframe[tile2model[i].framenum];
}
////// realloc & change "numframes" everywhere
if (m->muladdframes)
m->muladdframes = Xrealloc(m->muladdframes, 2*sizeof(vec3f_t)*usedframes);
m->head.frames = Xrealloc(m->head.frames, sizeof(md3frame_t)*usedframes);
for (surfi=0; surfi < m->head.numsurfs; surfi++)
{
m->head.surfs[surfi].numframes = usedframes;
// CAN'T do that because xyzn is offset from a larger block when loaded from md3:
// m->head.surfs[surfi].xyzn = Xrealloc(m->head.surfs[surfi].xyzn, s->numverts*usedframes*sizeof(md3xyzn_t));
}
m->head.numframes = usedframes;
m->numframes = usedframes;
////////////
return usedframes;
}
#endif
int32_t md_defineskin(int32_t modelid, const char *skinfn, int32_t palnum, int32_t skinnum, int32_t surfnum, float param, float specpower, float specfactor, int32_t flags)
{
mdskinmap_t *sk, *skl;
md2model_t *m;
if (!mdinited) mdinit();
if ((uint32_t)modelid >= (uint32_t)nextmodelid) return -1;
if (!skinfn) return -2;
if ((unsigned)palnum >= (unsigned)MAXPALOOKUPS) return -3;
m = (md2model_t *)models[modelid];
if (m->mdnum < 2) return 0;
if (m->mdnum == 2) surfnum = 0;
skl = NULL;
for (sk = m->skinmap; sk; skl = sk, sk = sk->next)
if (sk->palette == (uint8_t)palnum && skinnum == sk->skinnum && surfnum == sk->surfnum)
break;
if (!sk)
{
sk = (mdskinmap_t *)Xcalloc(1,sizeof(mdskinmap_t));
if (!skl) m->skinmap = sk;
else skl->next = sk;
}
else Xfree(sk->fn);
sk->palette = (uint8_t)palnum;
sk->flags = (uint8_t)flags;
sk->skinnum = skinnum;
sk->surfnum = surfnum;
sk->param = param;
sk->specpower = specpower;
sk->specfactor = specfactor;
sk->fn = Xstrdup(skinfn);
return 0;
}
int32_t md_definehud(int32_t modelid, int32_t tilex, vec3f_t add, int32_t angadd, int32_t flags, int32_t fov)
{
if (!mdinited) mdinit();
if ((uint32_t)modelid >= (uint32_t)nextmodelid) return -1;
if ((uint32_t)tilex >= (uint32_t)MAXTILES) return -2;
tile2model[tilex].hudmem[(flags>>2)&1] = (hudtyp *)Xmalloc(sizeof(hudtyp));
hudtyp * const hud = tile2model[tilex].hudmem[(flags>>2)&1];
hud->add = add;
hud->angadd = ((int16_t)angadd)|2048;
hud->flags = (int16_t)flags;
hud->fov = (int16_t)fov;
return 0;
}
int32_t md_undefinetile(int32_t tile)
{
if (!mdinited) return 0;
if ((unsigned)tile >= (unsigned)MAXTILES) return -1;
tile2model[tile].modelid = -1;
tile2model[tile].nexttile = -1;
DO_FREE_AND_NULL(tile2model[tile].hudmem[0]);
DO_FREE_AND_NULL(tile2model[tile].hudmem[1]);
return 0;
}
/* this function is problematic, it leaves NULL holes in model[]
* (which runs from 0 to nextmodelid-1) */
int32_t md_undefinemodel(int32_t modelid)
{
int32_t i;
if (!mdinited) return 0;
if ((uint32_t)modelid >= (uint32_t)nextmodelid) return -1;
for (i=MAXTILES+EXTRATILES-1; i>=0; i--)
if (tile2model[i].modelid == modelid)
{
tile2model[i].modelid = -1;
DO_FREE_AND_NULL(tile2model[i].hudmem[0]);
DO_FREE_AND_NULL(tile2model[i].hudmem[1]);
}
if (models)
{
mdfree(models[modelid]);
models[modelid] = NULL;
}
return 0;
}
static inline int32_t hicfxmask(size_t pal)
{
return globalnoeffect ? 0 : (hictinting[pal].f & HICTINT_IN_MEMORY);
}
static inline int32_t hicfxid(size_t pal)
{
return globalnoeffect ? 0 : ((hictinting[pal].f & (HICTINT_GRAYSCALE|HICTINT_INVERT|HICTINT_COLORIZE)) | ((hictinting[pal].f & HICTINT_BLENDMASK)<<3));
}
static FHardwareTexture *mdloadskin_notfound(char * const skinfile, char const * const fn)
{
OSD_Printf("Skin \"%s\" not found.\n", fn);
skinfile[0] = 0;
return nullptr;
}
static FHardwareTexture *mdloadskin_failed(char * const skinfile, char const * const fn)
{
OSD_Printf("Failed loading skin file \"%s\".\n", fn);
skinfile[0] = 0;
return nullptr;
}
//Note: even though it says md2model, it works for both md2model&md3model
FHardwareTexture *mdloadskin(md2model_t *m, int32_t number, int32_t pal, int32_t surf)
{
int32_t i;
char *skinfile = NULL, fn[BMAX_PATH];
FHardwareTexture **texidx = NULL;
mdskinmap_t *sk, *skzero = NULL;
int32_t doalloc = 1;
if (m->mdnum == 2)
surf = 0;
if ((unsigned)pal >= (unsigned)MAXPALOOKUPS)
return 0;
i = -1;
for (sk = m->skinmap; sk; sk = sk->next)
{
if (sk->palette == pal && sk->skinnum == number && sk->surfnum == surf)
{
skinfile = sk->fn;
texidx = &sk->texid[hicfxid(pal)];
Bstrncpyz(fn, skinfile, BMAX_PATH);
//OSD_Printf("Using exact match skin (pal=%d,skinnum=%d,surfnum=%d) %s\n",pal,number,surf,skinfile);
break;
}
//If no match, give highest priority to number, then pal.. (Parkar's request, 02/27/2005)
else if ((sk->palette == 0) && (sk->skinnum == number) && (sk->surfnum == surf) && (i < 5)) { i = 5; skzero = sk; }
else if ((sk->palette == pal) && (sk->skinnum == 0) && (sk->surfnum == surf) && (i < 4)) { i = 4; skzero = sk; }
else if ((sk->palette == 0) && (sk->skinnum == 0) && (sk->surfnum == surf) && (i < 3)) { i = 3; skzero = sk; }
else if ((sk->palette == 0) && (sk->skinnum == number) && (i < 2)) { i = 2; skzero = sk; }
else if ((sk->palette == pal) && (sk->skinnum == 0) && (i < 1)) { i = 1; skzero = sk; }
else if ((sk->palette == 0) && (sk->skinnum == 0) && (i < 0)) { i = 0; skzero = sk; }
}
if (!sk)
{
if (pal >= (MAXPALOOKUPS - RESERVEDPALS))
return 0;
if (skzero)
{
skinfile = skzero->fn;
texidx = &skzero->texid[hicfxid(pal)];
Bstrncpyz(fn, skinfile, BMAX_PATH);
//OSD_Printf("Using def skin 0,0 as fallback, pal=%d\n", pal);
}
else
return 0;
}
if (skinfile == NULL || !skinfile[0])
return 0;
if (*texidx)
return *texidx;
// possibly fetch an already loaded multitexture :_)
if (pal >= (MAXPALOOKUPS - RESERVEDPALS))
for (i=0; i<nextmodelid; i++)
for (skzero = ((md2model_t *)models[i])->skinmap; skzero && sk; skzero = skzero->next)
if (!Bstrcasecmp(skzero->fn, sk->fn) && skzero->texid[hicfxid(pal)])
{
size_t f = hicfxid(pal);
sk->texid[f] = skzero->texid[f];
return sk->texid[f];
}
// for sk->flags below
if (!sk)
sk = skzero;
*texidx = 0;
auto texture = FTexture::GetTexture(fn);
if (texture == nullptr)
{
return mdloadskin_notfound(skinfile, fn);
}
if ((doalloc & 3) == 1)
{
*texidx = GLInterface.NewTexture();
}
auto glpic = *texidx;
glpic->CreateTexture(texture->GetWidth(), texture->GetHeight(), false, true);
auto image = texture->GetBgraBitmap(nullptr, nullptr);
bool hasalpha = texture->GetTranslucency();
bool onebitalpha = texture->isMasked();
glpic->LoadTexture(image);
if (!m->skinloaded)
{
m->skinloaded = 1+number;
}
if (*texidx)
{
(*texidx)->SetSampler(SamplerRepeat);
}
return (*texidx);
}
//Note: even though it says md2model, it works for both md2model&md3model
void updateanimation(md2model_t *m, tspriteptr_t tspr, uint8_t lpal)
{
if (m->numframes < 2)
{
m->interpol = 0;
return;
}
int32_t const tile = Ptile2tile(tspr->picnum,lpal);
m->cframe = m->nframe = tile2model[tile].framenum;
#ifdef DEBUGGINGAIDS
if (m->cframe >= m->numframes)
OSD_Printf("1: c > n\n");
#endif
int32_t const smoothdurationp = (r_animsmoothing && (tile2model[tile].smoothduration != 0));
spritesmooth_t * const smooth = &spritesmooth[((unsigned)tspr->owner < MAXSPRITES+MAXUNIQHUDID) ? tspr->owner : MAXSPRITES+MAXUNIQHUDID-1];
spriteext_t * const sprext = &spriteext[((unsigned)tspr->owner < MAXSPRITES+MAXUNIQHUDID) ? tspr->owner : MAXSPRITES+MAXUNIQHUDID-1];
const mdanim_t *anim;
for (anim = m->animations; anim && anim->startframe != m->cframe; anim = anim->next)
{
/* do nothing */;
}
int32_t i, j, k;
int32_t fps;
if (!anim)
{
if (!smoothdurationp || ((smooth->mdoldframe == m->cframe) && (smooth->mdcurframe == m->cframe)))
{
m->interpol = 0;
return;
}
// assert(smoothdurationp && ((smooth->mdoldframe != m->cframe) || (smooth->mdcurframe != m->cframe)))
if (smooth->mdoldframe != m->cframe)
{
if (smooth->mdsmooth == 0)
{
sprext->mdanimtims = mdtims;
m->interpol = 0;
smooth->mdsmooth = 1;
smooth->mdcurframe = m->cframe;
}
else if (smooth->mdcurframe != m->cframe)
{
sprext->mdanimtims = mdtims;
m->interpol = 0;
smooth->mdsmooth = 1;
smooth->mdoldframe = smooth->mdcurframe;
smooth->mdcurframe = m->cframe;
}
}
else // if (smooth->mdcurframe != m->cframe)
{
sprext->mdanimtims = mdtims;
m->interpol = 0;
smooth->mdsmooth = 1;
smooth->mdoldframe = smooth->mdcurframe;
smooth->mdcurframe = m->cframe;
}
}
else if (/* anim && */ sprext->mdanimcur != anim->startframe)
{
//if (sprext->flags & SPREXT_NOMDANIM) OSD_Printf("SPREXT_NOMDANIM\n");
//OSD_Printf("smooth launched ! oldanim %i new anim %i\n", sprext->mdanimcur, anim->startframe);
sprext->mdanimcur = (int16_t)anim->startframe;
sprext->mdanimtims = mdtims;
m->interpol = 0;
if (!smoothdurationp)
{
m->cframe = m->nframe = anim->startframe;
#ifdef DEBUGGINGAIDS
if (m->cframe >= m->numframes)
OSD_Printf("2: c > n\n");
#endif
goto prep_return;
}
m->nframe = anim->startframe;
m->cframe = smooth->mdoldframe;
#ifdef DEBUGGINGAIDS
if (m->cframe >= m->numframes)
OSD_Printf("3: c > n\n");
#endif
smooth->mdsmooth = 1;
goto prep_return;
}
fps = smooth->mdsmooth ? Blrintf((1.0f / ((float)tile2model[tile].smoothduration * (1.f / (float)UINT16_MAX))) * 66.f)
: anim ? anim->fpssc : 1;
i = (mdtims - sprext->mdanimtims) * ((fps * timerGetRate()) / 120);
j = (smooth->mdsmooth || !anim) ? 65536 : ((anim->endframe + 1 - anim->startframe) << 16);
// XXX: Just in case you play the game for a VERY long time...
if (i < 0) { i = 0; sprext->mdanimtims = mdtims; }
//compare with j*2 instead of j to ensure i stays > j-65536 for MDANIM_ONESHOT
if (anim && (i >= j+j) && (fps) && !mdpause) //Keep mdanimtims close to mdtims to avoid the use of MOD
sprext->mdanimtims += j/((fps*timerGetRate())/120);
k = i;
if (anim && (anim->flags&MDANIM_ONESHOT))
{ if (i > j-65536) i = j-65536; }
else { if (i >= j) { i -= j; if (i >= j) i %= j; } }
if (r_animsmoothing && smooth->mdsmooth)
{
m->nframe = anim ? anim->startframe : smooth->mdcurframe;
m->cframe = smooth->mdoldframe;
#ifdef DEBUGGINGAIDS
if (m->cframe >= m->numframes)
OSD_Printf("4: c > n\n");
#endif
//OSD_Printf("smoothing... cframe %i nframe %i\n", m->cframe, m->nframe);
if (k > 65535)
{
sprext->mdanimtims = mdtims;
m->interpol = 0;
smooth->mdsmooth = 0;
m->cframe = m->nframe; // = anim ? anim->startframe : smooth->mdcurframe;
#ifdef DEBUGGINGAIDS
if (m->cframe >= m->numframes)
OSD_Printf("5: c > n\n");
#endif
smooth->mdoldframe = m->cframe;
//OSD_Printf("smooth stopped !\n");
goto prep_return;
}
}
else
{
if (anim)
m->cframe = (i>>16)+anim->startframe;
#ifdef DEBUGGINGAIDS
if (m->cframe >= m->numframes)
OSD_Printf("6: c > n\n");
#endif
m->nframe = m->cframe+1;
if (anim && m->nframe > anim->endframe) // VERIFY: (!(r_animsmoothing && smooth->mdsmooth)) implies (anim!=NULL) ?
m->nframe = anim->startframe;
smooth->mdoldframe = m->cframe;
//OSD_Printf("not smoothing... cframe %i nframe %i\n", m->cframe, m->nframe);
}
m->interpol = ((float)(i&65535))/65536.f;
//OSD_Printf("interpol %f\n", m->interpol);
prep_return:
if (m->cframe >= m->numframes)
m->cframe = 0;
if (m->nframe >= m->numframes)
m->nframe = 0;
}
//--------------------------------------- MD2 LIBRARY BEGINS ---------------------------------------
static md2model_t *md2load(buildvfs_kfd fil, const char *filnam)
{
md2model_t *m;
md3model_t *m3;
md3surf_t *s;
md2frame_t *f;
md2head_t head;
char st[BMAX_PATH];
int32_t i, j, k;
int32_t ournumskins, ournumglcmds;
m = (md2model_t *)Xcalloc(1,sizeof(md2model_t));
m->mdnum = 2; m->scale = .01f;
kread(fil,(char *)&head,sizeof(md2head_t));
#if B_BIG_ENDIAN != 0
head.id = B_LITTLE32(head.id); head.vers = B_LITTLE32(head.vers);
head.skinxsiz = B_LITTLE32(head.skinxsiz); head.skinysiz = B_LITTLE32(head.skinysiz);
head.framebytes = B_LITTLE32(head.framebytes); head.numskins = B_LITTLE32(head.numskins);
head.numverts = B_LITTLE32(head.numverts); head.numuv = B_LITTLE32(head.numuv);
head.numtris = B_LITTLE32(head.numtris); head.numglcmds = B_LITTLE32(head.numglcmds);
head.numframes = B_LITTLE32(head.numframes); head.ofsskins = B_LITTLE32(head.ofsskins);
head.ofsuv = B_LITTLE32(head.ofsuv); head.ofstris = B_LITTLE32(head.ofstris);
head.ofsframes = B_LITTLE32(head.ofsframes); head.ofsglcmds = B_LITTLE32(head.ofsglcmds);
head.ofseof = B_LITTLE32(head.ofseof);
#endif
if ((head.id != IDP2_MAGIC) || (head.vers != 8)) { Xfree(m); return 0; } //"IDP2"
ournumskins = head.numskins ? head.numskins : 1;
ournumglcmds = head.numglcmds ? head.numglcmds : 1;
m->numskins = head.numskins;
m->numframes = head.numframes;
m->numverts = head.numverts;
m->numglcmds = head.numglcmds;
m->framebytes = head.framebytes;
m->frames = (char *)Xmalloc(m->numframes*m->framebytes);
m->glcmds = (int32_t *)Xmalloc(ournumglcmds*sizeof(int32_t));
m->tris = (md2tri_t *)Xmalloc(head.numtris*sizeof(md2tri_t));
m->uv = (md2uv_t *)Xmalloc(head.numuv*sizeof(md2uv_t));
klseek(fil,head.ofsframes,SEEK_SET);
if (kread(fil,(char *)m->frames,m->numframes*m->framebytes) != m->numframes*m->framebytes)
{ Xfree(m->uv); Xfree(m->tris); Xfree(m->glcmds); Xfree(m->frames); Xfree(m); return 0; }
if (m->numglcmds > 0)
{
klseek(fil,head.ofsglcmds,SEEK_SET);
if (kread(fil,(char *)m->glcmds,m->numglcmds*sizeof(int32_t)) != (int32_t)(m->numglcmds*sizeof(int32_t)))
{ Xfree(m->uv); Xfree(m->tris); Xfree(m->glcmds); Xfree(m->frames); Xfree(m); return 0; }
}
klseek(fil,head.ofstris,SEEK_SET);
if (kread(fil,(char *)m->tris,head.numtris*sizeof(md2tri_t)) != (int32_t)(head.numtris*sizeof(md2tri_t)))
{ Xfree(m->uv); Xfree(m->tris); Xfree(m->glcmds); Xfree(m->frames); Xfree(m); return 0; }
klseek(fil,head.ofsuv,SEEK_SET);
if (kread(fil,(char *)m->uv,head.numuv*sizeof(md2uv_t)) != (int32_t)(head.numuv*sizeof(md2uv_t)))
{ Xfree(m->uv); Xfree(m->tris); Xfree(m->glcmds); Xfree(m->frames); Xfree(m); return 0; }
#if B_BIG_ENDIAN != 0
{
char *f = (char *)m->frames;
int32_t *l,j;
md2frame_t *fr;
for (i = m->numframes-1; i>=0; i--)
{
fr = (md2frame_t *)f;
l = (int32_t *)&fr->mul;
for (j=5; j>=0; j--) l[j] = B_LITTLE32(l[j]);
f += m->framebytes;
}
for (i = m->numglcmds-1; i>=0; i--)
{
m->glcmds[i] = B_LITTLE32(m->glcmds[i]);
}
for (i = head.numtris-1; i>=0; i--)
{
m->tris[i].v[0] = B_LITTLE16(m->tris[i].v[0]);
m->tris[i].v[1] = B_LITTLE16(m->tris[i].v[1]);
m->tris[i].v[2] = B_LITTLE16(m->tris[i].v[2]);
m->tris[i].u[0] = B_LITTLE16(m->tris[i].u[0]);
m->tris[i].u[1] = B_LITTLE16(m->tris[i].u[1]);
m->tris[i].u[2] = B_LITTLE16(m->tris[i].u[2]);
}
for (i = head.numuv-1; i>=0; i--)
{
m->uv[i].u = B_LITTLE16(m->uv[i].u);
m->uv[i].v = B_LITTLE16(m->uv[i].v);
}
}
#endif
Bstrcpy(st,filnam);
for (i=strlen(st)-1; i>0; i--)
if ((st[i] == '/') || (st[i] == '\\')) { i++; break; }
if (i<0) i=0;
st[i] = 0;
m->basepath = (char *)Xmalloc(i+1);
Bstrcpy(m->basepath, st);
m->skinfn = (char *)Xmalloc(ournumskins*64);
if (m->numskins > 0)
{
klseek(fil,head.ofsskins,SEEK_SET);
if (kread(fil,m->skinfn,64*m->numskins) != 64*m->numskins)
{ Xfree(m->glcmds); Xfree(m->frames); Xfree(m); return 0; }
}
m->texid = (FHardwareTexture **)Xcalloc(ournumskins, sizeof(FHardwareTexture*) * HICTINT_MEMORY_COMBINATIONS);
maxmodelverts = max(maxmodelverts, m->numverts);
maxmodeltris = max(maxmodeltris, head.numtris);
//return m;
// the MD2 is now loaded internally - let's begin the MD3 conversion process
//OSD_Printf("Beginning md3 conversion.\n");
m3 = (md3model_t *)Xcalloc(1, sizeof(md3model_t));
m3->mdnum = 3; m3->texid = nullptr; m3->scale = m->scale;
m3->head.id = IDP3_MAGIC; m3->head.vers = 15;
m3->head.flags = 0;
m3->head.numframes = m->numframes;
m3->head.numtags = 0; m3->head.numsurfs = 1;
m3->head.numskins = 0;
m3->numskins = m3->head.numskins;
m3->numframes = m3->head.numframes;
m3->head.frames = (md3frame_t *)Xcalloc(m3->head.numframes, sizeof(md3frame_t));
m3->muladdframes = (vec3f_t *)Xcalloc(m->numframes * 2, sizeof(vec3f_t));
f = (md2frame_t *)(m->frames);
// frames converting
i = 0;
while (i < m->numframes)
{
f = (md2frame_t *)&m->frames[i*m->framebytes];
Bstrcpy(m3->head.frames[i].nam, f->name);
//OSD_Printf("Copied frame %s.\n", m3->head.frames[i].nam);
m3->muladdframes[i*2] = f->mul;
m3->muladdframes[i*2+1] = f->add;
i++;
}
m3->head.tags = NULL;
m3->head.surfs = (md3surf_t *)Xcalloc(1, sizeof(md3surf_t));
s = m3->head.surfs;
// model converting
s->id = IDP3_MAGIC; s->flags = 0;
s->numframes = m->numframes; s->numshaders = 0;
s->numtris = head.numtris;
s->numverts = head.numtris * 3; // oh man talk about memory effectiveness :((((
// MD2 is actually more accurate than MD3 in term of uv-mapping, because each triangle has a triangle counterpart on the UV-map.
// In MD3, each vertex unique UV coordinates, meaning that you have to duplicate vertices if you need non-seamless UV-mapping.
maxmodelverts = max(maxmodelverts, s->numverts);
Bstrcpy(s->nam, "Dummy surface from MD2");
s->shaders = NULL;
s->tris = (md3tri_t *)Xcalloc(head.numtris, sizeof(md3tri_t));
s->uv = (md3uv_t *)Xcalloc(s->numverts, sizeof(md3uv_t));
s->xyzn = (md3xyzn_t *)Xcalloc(s->numverts * m->numframes, sizeof(md3xyzn_t));
//memoryusage += (s->numverts * m->numframes * sizeof(md3xyzn_t));
//OSD_Printf("Current model geometry memory usage : %i.\n", memoryusage);
//OSD_Printf("Number of frames : %i\n", m->numframes);
//OSD_Printf("Number of triangles : %i\n", head.numtris);
//OSD_Printf("Number of vertices : %i\n", s->numverts);
// triangle converting
i = 0;
while (i < head.numtris)
{
j = 0;
//OSD_Printf("Triangle : %i\n", i);
while (j < 3)
{
// triangle vertex indexes
s->tris[i].i[j] = i*3 + j;
// uv coords
s->uv[i*3+j].u = (float)(m->uv[m->tris[i].u[j]].u) / (float)(head.skinxsiz);
s->uv[i*3+j].v = (float)(m->uv[m->tris[i].u[j]].v) / (float)(head.skinysiz);
// vertices for each frame
k = 0;
while (k < m->numframes)
{
f = (md2frame_t *)&m->frames[k*m->framebytes];
s->xyzn[(k*s->numverts) + (i*3) + j].x = (int16_t) (((f->verts[m->tris[i].v[j]].v[0] * f->mul.x) + f->add.x) * 64.f);
s->xyzn[(k*s->numverts) + (i*3) + j].y = (int16_t) (((f->verts[m->tris[i].v[j]].v[1] * f->mul.y) + f->add.y) * 64.f);
s->xyzn[(k*s->numverts) + (i*3) + j].z = (int16_t) (((f->verts[m->tris[i].v[j]].v[2] * f->mul.z) + f->add.z) * 64.f);
k++;
}
j++;
}
//OSD_Printf("End triangle.\n");
i++;
}
//OSD_Printf("Finished md3 conversion.\n");
{
mdskinmap_t *sk;
sk = (mdskinmap_t *)Xcalloc(1,sizeof(mdskinmap_t));
sk->palette = 0;
sk->skinnum = 0;
sk->surfnum = 0;
if (m->numskins > 0)
{
sk->fn = (char *)Xmalloc(strlen(m->basepath)+strlen(m->skinfn)+1);
Bstrcpy(sk->fn, m->basepath);
Bstrcat(sk->fn, m->skinfn);
}
m3->skinmap = sk;
}
m3->indexes = (uint16_t *)Xmalloc(sizeof(uint16_t) * s->numtris);
m3->vindexes = (uint16_t *)Xmalloc(sizeof(uint16_t) * s->numtris * 3);
m3->maxdepths = (float *)Xmalloc(sizeof(float) * s->numtris);
// die MD2 ! DIE !
Xfree(m->texid); Xfree(m->skinfn); Xfree(m->basepath); Xfree(m->uv); Xfree(m->tris); Xfree(m->glcmds); Xfree(m->frames); Xfree(m);
return ((md2model_t *)m3);
}
//---------------------------------------- MD2 LIBRARY ENDS ----------------------------------------
// DICHOTOMIC RECURSIVE SORTING - USED BY MD3DRAW
int32_t partition(uint16_t *indexes, float *depths, int32_t f, int32_t l)
{
int32_t up = f, down = l;
float piv = depths[f];
uint16_t piv2 = indexes[f];
do
{
while ((up < l) && (depths[up] <= piv))
up++;
while ((depths[down] > piv) && (down > f))
down--;
if (up < down)
{
swapfloat(&depths[up], &depths[down]);
swapshort(&indexes[up], &indexes[down]);
}
}
while (down > up);
depths[f] = depths[down];
depths[down] = piv;
indexes[f] = indexes[down];
indexes[down] = piv2;
return down;
}
static inline void quicksort(uint16_t *indexes, float *depths, int32_t first, int32_t last)
{
int32_t pivIndex;
if (first >= last) return;
pivIndex = partition(indexes, depths, first, last);
if (first < (pivIndex-1)) quicksort(indexes, depths, first, (pivIndex-1));
if ((pivIndex+1) >= last) return;
quicksort(indexes, depths, (pivIndex+1), last);
}
// END OF QUICKSORT LIB
//--------------------------------------- MD3 LIBRARY BEGINS ---------------------------------------
static md3model_t *md3load(buildvfs_kfd fil)
{
int32_t i, surfi, ofsurf, offs[4], leng[4];
int32_t maxtrispersurf;
md3model_t *m;
md3surf_t *s;
m = (md3model_t *)Xcalloc(1,sizeof(md3model_t));
m->mdnum = 3; m->texid = 0; m->scale = .01f;
m->muladdframes = NULL;
kread(fil,&m->head,SIZEOF_MD3HEAD_T);
#if B_BIG_ENDIAN != 0
m->head.id = B_LITTLE32(m->head.id); m->head.vers = B_LITTLE32(m->head.vers);
m->head.flags = B_LITTLE32(m->head.flags); m->head.numframes = B_LITTLE32(m->head.numframes);
m->head.numtags = B_LITTLE32(m->head.numtags); m->head.numsurfs = B_LITTLE32(m->head.numsurfs);
m->head.numskins = B_LITTLE32(m->head.numskins); m->head.ofsframes = B_LITTLE32(m->head.ofsframes);
m->head.ofstags = B_LITTLE32(m->head.ofstags); m->head.ofssurfs = B_LITTLE32(m->head.ofssurfs);
m->head.eof = B_LITTLE32(m->head.eof);
#endif
if ((m->head.id != IDP3_MAGIC) && (m->head.vers != 15)) { Xfree(m); return 0; } //"IDP3"
m->numskins = m->head.numskins; //<- dead code?
m->numframes = m->head.numframes;
ofsurf = m->head.ofssurfs;
klseek(fil,m->head.ofsframes,SEEK_SET); i = m->head.numframes*sizeof(md3frame_t);
m->head.frames = (md3frame_t *)Xmalloc(i);
kread(fil,m->head.frames,i);
if (m->head.numtags == 0) m->head.tags = NULL;
else
{
klseek(fil,m->head.ofstags,SEEK_SET); i = m->head.numtags*sizeof(md3tag_t);
m->head.tags = (md3tag_t *)Xmalloc(i);
kread(fil,m->head.tags,i);
}
klseek(fil,m->head.ofssurfs,SEEK_SET);
m->head.surfs = (md3surf_t *)Xcalloc(m->head.numsurfs, sizeof(md3surf_t));
// NOTE: We assume that NULL is represented by all-zeros.
// surfs[0].geometry is for POLYMER_MD_PROCESS_CHECK (else: crashes).
// surfs[i].geometry is for FREE_SURFS_GEOMETRY.
Bassert(m->head.surfs[0].geometry == NULL);
#if B_BIG_ENDIAN != 0
{
int32_t j, *l;
for (i = m->head.numframes-1; i>=0; i--)
{
l = (int32_t *)&m->head.frames[i].min;
for (j=3+3+3+1-1; j>=0; j--) l[j] = B_LITTLE32(l[j]);
}
for (i = m->head.numtags-1; i>=0; i--)
{
l = (int32_t *)&m->head.tags[i].p;
for (j=3+3+3+3-1; j>=0; j--) l[j] = B_LITTLE32(l[j]);
}
}
#endif
maxtrispersurf = 0;
for (surfi=0; surfi<m->head.numsurfs; surfi++)
{
s = &m->head.surfs[surfi];
klseek(fil,ofsurf,SEEK_SET); kread(fil,s,SIZEOF_MD3SURF_T);
#if B_BIG_ENDIAN != 0
{
int32_t j, *l;
s->id = B_LITTLE32(s->id);
l = (int32_t *)&s->flags;
for (j=1+1+1+1+1+1+1+1+1+1-1; j>=0; j--) l[j] = B_LITTLE32(l[j]);
}
#endif
offs[0] = ofsurf+s->ofstris;
offs[1] = ofsurf+s->ofsshaders;
offs[2] = ofsurf+s->ofsuv;
offs[3] = ofsurf+s->ofsxyzn;
leng[0] = s->numtris*sizeof(md3tri_t);
leng[1] = s->numshaders*sizeof(md3shader_t);
leng[2] = s->numverts*sizeof(md3uv_t);
leng[3] = s->numframes*s->numverts*sizeof(md3xyzn_t);
//memoryusage += (s->numverts * s->numframes * sizeof(md3xyzn_t));
//OSD_Printf("Current model geometry memory usage : %i.\n", memoryusage);
s->tris = (md3tri_t *)Xmalloc((leng[0] + leng[1]) + (leng[2] + leng[3]));
s->shaders = (md3shader_t *)(((intptr_t)s->tris)+leng[0]);
s->uv = (md3uv_t *)(((intptr_t)s->shaders)+leng[1]);
s->xyzn = (md3xyzn_t *)(((intptr_t)s->uv)+leng[2]);
klseek(fil,offs[0],SEEK_SET); kread(fil,s->tris ,leng[0]);
klseek(fil,offs[1],SEEK_SET); kread(fil,s->shaders,leng[1]);
klseek(fil,offs[2],SEEK_SET); kread(fil,s->uv ,leng[2]);
klseek(fil,offs[3],SEEK_SET); kread(fil,s->xyzn ,leng[3]);
#if B_BIG_ENDIAN != 0
{
int32_t j, *l;
for (i=s->numtris-1; i>=0; i--)
{
for (j=2; j>=0; j--) s->tris[i].i[j] = B_LITTLE32(s->tris[i].i[j]);
}
for (i=s->numshaders-1; i>=0; i--)
{
s->shaders[i].i = B_LITTLE32(s->shaders[i].i);
}
for (i=s->numverts-1; i>=0; i--)
{
l = (int32_t *)&s->uv[i].u;
l[0] = B_LITTLE32(l[0]);
l[1] = B_LITTLE32(l[1]);
}
for (i=s->numframes*s->numverts-1; i>=0; i--)
{
s->xyzn[i].x = (int16_t)B_LITTLE16((uint16_t)s->xyzn[i].x);
s->xyzn[i].y = (int16_t)B_LITTLE16((uint16_t)s->xyzn[i].y);
s->xyzn[i].z = (int16_t)B_LITTLE16((uint16_t)s->xyzn[i].z);
}
}
#endif
maxmodelverts = max(maxmodelverts, s->numverts);
maxmodeltris = max(maxmodeltris, s->numtris);
maxtrispersurf = max(maxtrispersurf, s->numtris);
ofsurf += s->ofsend;
}
m->indexes = (uint16_t *)Xmalloc(sizeof(uint16_t) * maxtrispersurf);
m->vindexes = (uint16_t *)Xmalloc(sizeof(uint16_t) * maxtrispersurf * 3);
m->maxdepths = (float *)Xmalloc(sizeof(float) * maxtrispersurf);
return m;
}
static void md3postload_common(md3model_t *m)
{
int framei, surfi, verti;
md3frame_t *frame;
md3xyzn_t *frameverts;
float dist, vec1[3];
// apparently we can't trust loaded models bounding box/sphere information,
// so let's compute it ourselves
framei = 0;
while (framei < m->head.numframes)
{
frame = &m->head.frames[framei];
Bmemset(&frame->min, 0, sizeof(vec3f_t));
Bmemset(&frame->max, 0, sizeof(vec3f_t));
frame->r = 0.0f;
surfi = 0;
while (surfi < m->head.numsurfs)
{
frameverts = &m->head.surfs[surfi].xyzn[framei * m->head.surfs[surfi].numverts];
verti = 0;
while (verti < m->head.surfs[surfi].numverts)
{
if (!verti && !surfi)
{
md3xyzn_t const & framevert = frameverts[0];
frame->min.x = framevert.x;
frame->min.y = framevert.y;
frame->min.z = framevert.z;
frame->max = frame->min;
}
else
{
md3xyzn_t const & framevert = frameverts[verti];
if (frame->min.x > framevert.x)
frame->min.x = framevert.x;
if (frame->max.x < framevert.x)
frame->max.x = framevert.x;
if (frame->min.y > framevert.y)
frame->min.y = framevert.y;
if (frame->max.y < framevert.y)
frame->max.y = framevert.y;
if (frame->min.z > framevert.z)
frame->min.z = framevert.z;
if (frame->max.z < framevert.z)
frame->max.z = framevert.z;
}
++verti;
}
++surfi;
}
frame->cen.x = (frame->min.x + frame->max.x) * .5f;
frame->cen.y = (frame->min.y + frame->max.y) * .5f;
frame->cen.z = (frame->min.z + frame->max.z) * .5f;
surfi = 0;
while (surfi < m->head.numsurfs)
{
md3surf_t const & surf = m->head.surfs[surfi];
frameverts = &surf.xyzn[framei * surf.numverts];
verti = 0;
while (verti < surf.numverts)
{
md3xyzn_t const & framevert = frameverts[verti];
vec1[0] = framevert.x - frame->cen.x;
vec1[1] = framevert.y - frame->cen.y;
vec1[2] = framevert.z - frame->cen.z;
dist = vec1[0] * vec1[0] + vec1[1] * vec1[1] + vec1[2] * vec1[2];
if (dist > frame->r)
frame->r = dist;
++verti;
}
++surfi;
}
frame->r = Bsqrtf(frame->r);
++framei;
}
}
#ifdef POLYMER
// pre-check success of conversion since it must not fail later.
// keep in sync with md3postload_polymer!
static int md3postload_polymer_check(md3model_t *m)
{
ssize_t surfi, trii;
md3surf_t *s;
surfi = 0;
while (surfi < m->head.numsurfs)
{
s = &m->head.surfs[surfi];
uint32_t const numverts = s->numverts;
trii = 0;
while (trii < s->numtris)
{
uint32_t const * const u = (uint32_t const *)s->tris[trii].i;
// let the vertices know they're being referenced by a triangle
if (u[0] >= numverts || u[1] >= numverts || u[2] >= numverts)
{
// corrupt model
OSD_Printf("%s: Triangle index out of bounds!\n", m->head.nam);
return 1;
}
++trii;
}
++surfi;
}
return 0;
}
// Precalculated cos/sin arrays.
static float g_mdcos[256], g_mdsin[256];
static int32_t mdtrig_init = 0;
static void init_mdtrig_arrays(void)
{
int32_t i;
for (i=0; i<256; i++)
{
float ang = i * (2.f * fPI) * (1.f/255.f);
g_mdcos[i] = cosf(ang);
g_mdsin[i] = sinf(ang);
}
mdtrig_init = 1;
}
#endif
int md3postload_polymer(md3model_t *m)
{
#ifdef POLYMER
int framei, surfi, verti, trii;
float vec1[5], vec2[5], mat[9], r;
// POLYMER_MD_PROCESS_CHECK
if (m->head.surfs[0].geometry)
return -1; // already postprocessed
if (!mdtrig_init)
init_mdtrig_arrays();
// let's also repack the geometry to more usable formats
surfi = 0;
while (surfi < m->head.numsurfs)
{
handleevents();
md3surf_t *const s = &m->head.surfs[surfi];
#ifdef DEBUG_MODEL_MEM
i = (m->head.numframes * s->numverts * sizeof(float) * 15);
if (i > 1<<20)
initprintf("size %d (%d fr, %d v): md %s surf %d/%d\n", i, m->head.numframes, s->numverts,
m->head.nam, surfi, m->head.numsurfs);
#endif
s->geometry = (float *)Xcalloc(m->head.numframes * s->numverts * 15, sizeof(float));
if (s->numverts > tribufverts)
{
tribuf = (int32_t *) Xrealloc(tribuf, s->numverts * sizeof(int32_t));
tribufverts = s->numverts;
}
Bmemset(tribuf, 0, s->numverts * sizeof(int32_t));
verti = 0;
while (verti < (m->head.numframes * s->numverts))
{
md3xyzn_t const & xyzn = s->xyzn[verti];
// normal extraction from packed spherical coordinates
// FIXME: swapping lat and lng because of npherno's compiler
uint8_t lat = xyzn.nlng;
uint8_t lng = xyzn.nlat;
size_t verti15 = (size_t)verti * 15;
s->geometry[verti15 + 0] = xyzn.x;
s->geometry[verti15 + 1] = xyzn.y;
s->geometry[verti15 + 2] = xyzn.z;
s->geometry[verti15 + 3] = g_mdcos[lat] * g_mdsin[lng];
s->geometry[verti15 + 4] = g_mdsin[lat] * g_mdsin[lng];
s->geometry[verti15 + 5] = g_mdcos[lng];
++verti;
}
uint32_t numverts = s->numverts;
trii = 0;
while (trii < s->numtris)
{
int32_t const * const i = s->tris[trii].i;
uint32_t const * const u = (uint32_t const *)i;
// let the vertices know they're being referenced by a triangle
if (u[0] >= numverts ||u[1] >= numverts || u[2] >= numverts)
{
// corrupt model
return 0;
}
tribuf[u[0]]++;
tribuf[u[1]]++;
tribuf[u[2]]++;
uint32_t const tris15[] = { u[0] * 15, u[1] * 15, u[2] * 15 };
framei = 0;
while (framei < m->head.numframes)
{
const uint32_t verti15 = framei * s->numverts * 15;
vec1[0] = s->geometry[verti15 + tris15[1]] - s->geometry[verti15 + tris15[0]];
vec1[1] = s->geometry[verti15 + tris15[1] + 1] - s->geometry[verti15 + tris15[0] + 1];
vec1[2] = s->geometry[verti15 + tris15[1] + 2] - s->geometry[verti15 + tris15[0] + 2];
vec1[3] = s->uv[u[1]].u - s->uv[u[0]].u;
vec1[4] = s->uv[u[1]].v - s->uv[u[0]].v;
vec2[0] = s->geometry[verti15 + tris15[2]] - s->geometry[verti15 + tris15[1]];
vec2[1] = s->geometry[verti15 + tris15[2] + 1] - s->geometry[verti15 + tris15[1] + 1];
vec2[2] = s->geometry[verti15 + tris15[2] + 2] - s->geometry[verti15 + tris15[1] + 2];
vec2[3] = s->uv[u[2]].u - s->uv[u[1]].u;
vec2[4] = s->uv[u[2]].v - s->uv[u[1]].v;
r = (vec1[3] * vec2[4] - vec2[3] * vec1[4]);
if (r != 0.0f)
{
r = 1.f/r;
// tangent
mat[0] = (vec2[4] * vec1[0] - vec1[4] * vec2[0]) * r;
mat[1] = (vec2[4] * vec1[1] - vec1[4] * vec2[1]) * r;
mat[2] = (vec2[4] * vec1[2] - vec1[4] * vec2[2]) * r;
normalize(&mat[0]);
// bitangent
mat[3] = (vec1[3] * vec2[0] - vec2[3] * vec1[0]) * r;
mat[4] = (vec1[3] * vec2[1] - vec2[3] * vec1[1]) * r;
mat[5] = (vec1[3] * vec2[2] - vec2[3] * vec1[2]) * r;
normalize(&mat[3]);
}
else
Bmemset(mat, 0, sizeof(float) * 6);
// T and B are shared for the three vertices in that triangle
size_t const offs = (framei * numverts * 15) + 6;
size_t j = 0;
do
{
size_t const offsi = offs + j;
s->geometry[offsi + tris15[0]] += mat[j];
s->geometry[offsi + tris15[1]] += mat[j];
s->geometry[offsi + tris15[2]] += mat[j];
}
while (++j < 6);
++framei;
}
++trii;
}
// now that we accumulated the TBNs, average and invert them for each vertex
int verti_end = m->head.numframes * s->numverts;
verti = 0;
while (verti < verti_end)
{
const int32_t curnumtris = tribuf[verti % s->numverts];
uint32_t const verti15 = verti * 15;
if (curnumtris > 0)
{
const float rfcurnumtris = 1.f/(float)curnumtris;
size_t i = 6;
do
s->geometry[i + verti15] *= rfcurnumtris;
while (++i < 12);
}
#ifdef DEBUG_MODEL_MEM
else if (verti == verti%s->numverts)
{
OSD_Printf("%s: vert %d is unused\n", m->head.nam, verti);
}
#endif
// copy N over
Bmemcpy(&s->geometry[verti15 + 12], &s->geometry[verti15 + 3], sizeof(float) * 3);
invertmatrix(&s->geometry[verti15 + 6], mat);
Bmemcpy(&s->geometry[verti15 + 6], mat, sizeof(float) * 9);
++verti;
}
++surfi;
}
#else
UNREFERENCED_PARAMETER(m);
#endif
return 1;
}
void md3_vox_calcmat_common(tspriteptr_t tspr, const vec3f_t *a0, float f, float mat[16])
{
float g;
float k0, k1, k2, k3, k4, k5, k6, k7;
k0 = ((float)(tspr->x-globalposx))*f*(1.f/1024.f);
k1 = ((float)(tspr->y-globalposy))*f*(1.f/1024.f);
f = gcosang2*gshang/gvrcorrection;
g = gsinang2*gshang/gvrcorrection;
k4 = (float)sintable[(tspr->ang+spriteext[tspr->owner].angoff+1024)&2047] * (1.f/16384.f);
k5 = (float)sintable[(tspr->ang+spriteext[tspr->owner].angoff+ 512)&2047] * (1.f/16384.f);
k2 = k0*(1-k4)+k1*k5;
k3 = k1*(1-k4)-k0*k5;
k6 = f*gstang - gsinang*gctang; k7 = g*gstang + gcosang*gctang;
mat[0] = k4*k6 + k5*k7; mat[4] = gchang*gstang; mat[ 8] = k4*k7 - k5*k6; mat[12] = k2*k6 + k3*k7;
k6 = f*gctang + gsinang*gstang; k7 = g*gctang - gcosang*gstang;
mat[1] = k4*k6 + k5*k7; mat[5] = gchang*gctang; mat[ 9] = k4*k7 - k5*k6; mat[13] = k2*k6 + k3*k7;
k6 = gcosang2*gchang; k7 = gsinang2*gchang;
mat[2] = k4*k6 + k5*k7; mat[6] =-gshang*gvrcorrection; mat[10] = k4*k7 - k5*k6; mat[14] = k2*k6 + k3*k7;
mat[12] = (mat[12] + a0->y*mat[0]) + (a0->z*mat[4] + a0->x*mat[ 8]);
mat[13] = (mat[13] + a0->y*mat[1]) + (a0->z*mat[5] + a0->x*mat[ 9]);
mat[14] = (mat[14] + a0->y*mat[2]) + (a0->z*mat[6] + a0->x*mat[10]);
}
static void md3draw_handle_triangles(const md3surf_t *s, uint16_t *indexhandle,
int32_t texunits, const md3model_t *M)
{
int32_t i;
auto data = GLInterface.AllocVertices(s->numtris * 3);
auto vt = data.second;
for (i=s->numtris-1; i>=0; i--)
{
uint16_t tri = M ? M->indexes[i] : i;
int32_t j;
for (j=0; j<3; j++, vt++)
{
int32_t k = s->tris[tri].i[j];
vt->SetTexCoord(s->uv[k].u, s->uv[k].v);
vt->SetVertex(vertlist[k].x, vertlist[k].y);
}
}
GLInterface.Draw(DT_TRIANGLES, data.first, s->numtris *3);
#ifndef USE_GLEXT
UNREFERENCED_PARAMETER(texunits);
#endif
}
static int32_t polymost_md3draw(md3model_t *m, tspriteptr_t tspr)
{
vec3f_t m0, m1, a0;
md3xyzn_t *v0, *v1;
int32_t i, surfi;
float f, g, k0, k1, k2=0, k3=0, mat[16]; // inits: compiler-happy
GLfloat pc[4];
// int32_t texunits = GL_TEXTURE0;
const int32_t owner = tspr->owner;
const spriteext_t *const sext = &spriteext[((unsigned)owner < MAXSPRITES+MAXUNIQHUDID) ? owner : MAXSPRITES+MAXUNIQHUDID-1];
const uint8_t lpal = ((unsigned)owner < MAXSPRITES) ? sprite[tspr->owner].pal : tspr->pal;
const int32_t sizyrep = tilesiz[tspr->picnum].y*tspr->yrepeat;
polymost_outputGLDebugMessage(3, "polymost_md3draw(m:%p, tspr:%p)", m, tspr);
// if ((tspr->cstat&48) == 32) return 0;
updateanimation((md2model_t *)m, tspr, lpal);
//create current&next frame's vertex list from whole list
f = m->interpol; g = 1.f - f;
if (m->interpol < 0.f || m->interpol > 1.f ||
(unsigned)m->cframe >= (unsigned)m->numframes ||
(unsigned)m->nframe >= (unsigned)m->numframes)
{
#ifdef DEBUGGINGAIDS
OSD_Printf("%s: mdframe oob: c:%d n:%d total:%d interpol:%.02f\n",
m->head.nam, m->cframe, m->nframe, m->numframes, m->interpol);
#endif
m->interpol = fclamp(m->interpol, 0.f, 1.f);
m->cframe = clamp(m->cframe, 0, m->numframes-1);
m->nframe = clamp(m->nframe, 0, m->numframes-1);
}
m0.z = m0.y = m0.x = g *= m->scale * (1.f/64.f);
m1.z = m1.y = m1.x = f *= m->scale * (1.f/64.f);
a0.x = a0.y = 0;
a0.z = m->zadd * m->scale;
// Parkar: Moved up to be able to use k0 for the y-flipping code
k0 = (float)tspr->z;
if ((globalorientation&128) && !((globalorientation&48)==32))
k0 += (float)(sizyrep<<1);
// Parkar: Changed to use the same method as centeroriented sprites
if (globalorientation&8) //y-flipping
{
m0.z = -m0.z; m1.z = -m1.z; a0.z = -a0.z;
k0 -= (float)(sizyrep<<2);
}
if (globalorientation&4) { m0.y = -m0.y; m1.y = -m1.y; a0.y = -a0.y; } //x-flipping
// yoffset differs from zadd in that it does not follow cstat&8 y-flipping
a0.z += m->yoffset*m->scale;
f = ((float)tspr->xrepeat) * (1.f/64.f) * m->bscale;
m0.x *= f; m0.y *= -f;
m1.x *= f; m1.y *= -f;
a0.x *= f; a0.y *= -f;
f = ((float)tspr->yrepeat) * (1.f/64.f) * m->bscale;
m0.z *= f; m1.z *= f; a0.z *= f;
// floor aligned
k1 = (float)tspr->y;
if ((globalorientation&48)==32)
{
m0.z = -m0.z; m1.z = -m1.z; a0.z = -a0.z;
m0.y = -m0.y; m1.y = -m1.y; a0.y = -a0.y;
f = a0.x; a0.x = a0.z; a0.z = f;
k1 += (float)(sizyrep>>3);
}
// Note: These SCREEN_FACTORS will be neutralized in axes offset
// calculations below again, but are needed for the base offsets.
f = (65536.f*512.f)/(fxdimen*fviewingrange);
g = 32.f/(fxdimen*gxyaspect);
m0.y *= f; m1.y *= f; a0.y = (((float)(tspr->x-globalposx))* (1.f/1024.f) + a0.y)*f;
m0.x *=-f; m1.x *=-f; a0.x = ((k1 -fglobalposy) * -(1.f/1024.f) + a0.x)*-f;
m0.z *= g; m1.z *= g; a0.z = ((k0 -fglobalposz) * -(1.f/16384.f) + a0.z)*g;
md3_vox_calcmat_common(tspr, &a0, f, mat);
// floor aligned
if ((globalorientation&48)==32)
{
f = mat[4]; mat[4] = mat[8]*16.f; mat[8] = -f*(1.f/16.f);
f = mat[5]; mat[5] = mat[9]*16.f; mat[9] = -f*(1.f/16.f);
f = mat[6]; mat[6] = mat[10]*16.f; mat[10] = -f*(1.f/16.f);
}
//Mirrors
if (grhalfxdown10x < 0) { mat[0] = -mat[0]; mat[4] = -mat[4]; mat[8] = -mat[8]; mat[12] = -mat[12]; }
//------------
// TSPR_EXTRA_MDHACK is an ugly hack in game.c:G_DoSpriteAnimations() telling md2sprite
// to use Z-buffer hacks to hide overdraw problems with the flat-tsprite-on-floor shadows,
// also disabling detail, glow, normal, and specular maps.
if (tspr->extra&TSPR_EXTRA_MDHACK)
{
double f = (double) (tspr->owner + 1) * (std::numeric_limits<double>::epsilon() * 8.0);
if (f != 0.0) f *= 1.0/(double) (sepldist(globalposx - tspr->x, globalposy - tspr->y)>>5);
GLInterface.SetDepthFunc(Depth_LessEqual);
}
int winding = ((grhalfxdown10x >= 0) ^((globalorientation&8) != 0) ^((globalorientation&4) != 0))? Winding_CW : Winding_CCW;
GLInterface.SetCull(Cull_Back, winding);
// tinting
pc[0] = pc[1] = pc[2] = ((float)numshades - min(max((globalshade * shadescale) + m->shadeoff, 0.f), (float)numshades)) / (float)numshades;
auto& h = hictinting[globalpal];
polytintflags_t const tintflags = h.f;
if (!(tintflags & HICTINT_PRECOMPUTED))
{
if (!(m->flags&1))
hictinting_apply(pc, globalpal);
else globalnoeffect=1;
}
GLInterface.SetTinting(tintflags, PalEntry(h.sr, h.sg, h.sb));
// global tinting
if (have_basepal_tint())
hictinting_apply(pc, MAXPALOOKUPS-1);
pc[3] = (tspr->cstat&2) ? glblend[tspr->blend].def[!!(tspr->cstat&512)].alpha : 1.0f;
pc[3] *= 1.0f - sext->alpha;
handle_blend(!!(tspr->cstat & 2), tspr->blend, !!(tspr->cstat & 512));
if (m->usesalpha) //Sprites with alpha in texture
{
// PLAG : default cutoff removed
float al = 0.0;
if (alphahackarray[globalpicnum] != 0)
al=alphahackarray[globalpicnum] * (1.f/255.f);
GLInterface.EnableBlend(true);
GLInterface.EnableAlphaTest(true);
GLInterface.SetAlphaThreshold(al);
}
else
{
if ((tspr->cstat&2) || sext->alpha > 0.f || pc[3] < 1.0f)
GLInterface.EnableBlend(true); //else GLInterface.EnableBlend(false);
}
GLInterface.SetColor(pc[0],pc[1],pc[2],pc[3]);
//if (MFLAGS_NOCONV(m))
// GLInterface.SetColor(0.0f, 0.0f, 1.0f, 1.0f);
//------------
// PLAG: Cleaner model rotation code
if (sext->pitch || sext->roll)
{
float f = 1.f/(fxdimen * fviewingrange) * (256.f/(65536.f*128.f)) * (m0.x+m1.x);
Bmemset(&a0, 0, sizeof(a0));
if (sext->offset.x)
a0.x = (float) sext->offset.x * f;
if (sext->offset.y) // Compare with SCREEN_FACTORS above
a0.y = (float) sext->offset.y * f;
if ((sext->offset.z) && !(tspr->extra&TSPR_EXTRA_MDHACK)) // Compare with SCREEN_FACTORS above
a0.z = (float)sext->offset.z / (gxyaspect * fxdimen * (65536.f/128.f) * (m0.z+m1.z));
k0 = (float)sintable[(sext->pitch+512)&2047] * (1.f/16384.f);
k1 = (float)sintable[sext->pitch&2047] * (1.f/16384.f);
k2 = (float)sintable[(sext->roll+512)&2047] * (1.f/16384.f);
k3 = (float)sintable[sext->roll&2047] * (1.f/16384.f);
}
float const xpanning = (float)sext->xpanning * (1.f/256.f);
float const ypanning = (float)sext->ypanning * (1.f/256.f);
int prevClamp = GLInterface.GetClamp();
GLInterface.SetClamp(0);
for (surfi=0; surfi<m->head.numsurfs; surfi++)
{
//PLAG : sorting stuff
uint16_t *indexhandle;
vec3f_t fp;
const md3surf_t *const s = &m->head.surfs[surfi];
v0 = &s->xyzn[m->cframe*s->numverts];
v1 = &s->xyzn[m->nframe*s->numverts];
if (sext->pitch || sext->roll)
{
vec3f_t fp1, fp2;
for (i=s->numverts-1; i>=0; i--)
{
fp.z = v0[i].x + a0.x;
fp.x = v0[i].y + a0.y;
fp.y = v0[i].z + a0.z;
fp1.x = fp.x*k2 + fp.y*k3;
fp1.y = fp.x*k0*(-k3) + fp.y*k0*k2 + fp.z*(-k1);
fp1.z = fp.x*k1*(-k3) + fp.y*k1*k2 + fp.z*k0;
fp.z = v1[i].x + a0.x;
fp.x = v1[i].y + a0.y;
fp.y = v1[i].z + a0.z;
fp2.x = fp.x*k2 + fp.y*k3;
fp2.y = fp.x*k0*(-k3) + fp.y*k0*k2 + fp.z*(-k1);
fp2.z = fp.x*k1*(-k3) + fp.y*k1*k2 + fp.z*k0;
fp.z = (fp1.z - a0.x)*m0.x + (fp2.z - a0.x)*m1.x;
fp.x = (fp1.x - a0.y)*m0.y + (fp2.x - a0.y)*m1.y;
fp.y = (fp1.y - a0.z)*m0.z + (fp2.y - a0.z)*m1.z;
vertlist[i] = fp;
}
}
else
{
for (i=s->numverts-1; i>=0; i--)
{
fp.z = v0[i].x*m0.x + v1[i].x*m1.x;
fp.y = v0[i].z*m0.z + v1[i].z*m1.z;
fp.x = v0[i].y*m0.y + v1[i].y*m1.y;
vertlist[i] = fp;
}
}
//Let OpenGL (and perhaps hardware :) handle the matrix rotation
mat[3] = mat[7] = mat[11] = 0.f; mat[15] = 1.f;
GLInterface.SetMatrix(Matrix_ModelView, mat);
// PLAG: End
auto tex = mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,globalpal,surfi);
if (!tex)
continue;
//i = mdloadskin((md2model *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,surfi); //hack for testing multiple surfaces per MD3
GLInterface.BindTexture(0, tex);
VSMatrix texmat(0);
texmat.translate(xpanning, ypanning, 1.0f);
if (!(tspr->extra&TSPR_EXTRA_MDHACK))
{
//POGOTODO: if we add support for palette indexing on model skins, the texture for the palswap could be setup here
tex = r_detailmapping ? mdloadskin((md2model_t *) m, tile2model[Ptile2tile(tspr->picnum, lpal)].skinnum, DETAILPAL, surfi) : nullptr;
if (tex)
{
mdskinmap_t *sk;
GLInterface.UseDetailMapping(true);
polymost_setupdetailtexture(3, tex);
for (sk = m->skinmap; sk; sk = sk->next)
if ((int32_t) sk->palette == DETAILPAL && sk->skinnum == tile2model[Ptile2tile(tspr->picnum, lpal)].skinnum && sk->surfnum == surfi)
f = sk->param;
texmat.loadIdentity();
texmat.translate(xpanning, ypanning, 1.0f);
texmat.scale(f, f, 1.0f);
GLInterface.SetMatrix(Matrix_Detail, &texmat);
}
tex = r_glowmapping ? mdloadskin((md2model_t *) m, tile2model[Ptile2tile(tspr->picnum, lpal)].skinnum, GLOWPAL, surfi) : 0;
if (i)
{
GLInterface.UseGlowMapping(true);
polymost_setupglowtexture(4, tex);
texmat.loadIdentity();
texmat.translate(xpanning, ypanning, 1.0f);
GLInterface.SetMatrix(Matrix_Glow, &texmat);
}
indexhandle = m->vindexes;
//PLAG: delayed polygon-level sorted rendering
if (m->usesalpha)
{
for (i=0; i<=s->numtris-1; ++i)
{
vec3f_t const vlt[3] = { vertlist[s->tris[i].i[0]], vertlist[s->tris[i].i[1]], vertlist[s->tris[i].i[2]] };
// Matrix multiplication - ugly but clear
vec3f_t const fp[3] = { { (vlt[0].x * mat[0]) + (vlt[0].y * mat[4]) + (vlt[0].z * mat[8]) + mat[12],
(vlt[0].x * mat[1]) + (vlt[0].y * mat[5]) + (vlt[0].z * mat[9]) + mat[13],
(vlt[0].x * mat[2]) + (vlt[0].y * mat[6]) + (vlt[0].z * mat[10]) + mat[14] },
{ (vlt[1].x * mat[0]) + (vlt[1].y * mat[4]) + (vlt[1].z * mat[8]) + mat[12],
(vlt[1].x * mat[1]) + (vlt[1].y * mat[5]) + (vlt[1].z * mat[9]) + mat[13],
(vlt[1].x * mat[2]) + (vlt[1].y * mat[6]) + (vlt[1].z * mat[10]) + mat[14] },
{ (vlt[2].x * mat[0]) + (vlt[2].y * mat[4]) + (vlt[2].z * mat[8]) + mat[12],
(vlt[2].x * mat[1]) + (vlt[2].y * mat[5]) + (vlt[2].z * mat[9]) + mat[13],
(vlt[2].x * mat[2]) + (vlt[2].y * mat[6]) + (vlt[2].z * mat[10]) + mat[14] } };
f = (fp[0].x * fp[0].x) + (fp[0].y * fp[0].y) + (fp[0].z * fp[0].z);
g = (fp[1].x * fp[1].x) + (fp[1].y * fp[1].y) + (fp[1].z * fp[1].z);
if (f > g)
f = g;
g = (fp[2].x * fp[2].x) + (fp[2].y * fp[2].y) + (fp[2].z * fp[2].z);
if (f > g)
f = g;
m->maxdepths[i] = f;
m->indexes[i] = i;
}
// dichotomic recursive sorting - about 100x less iterations than bubblesort
quicksort(m->indexes, m->maxdepths, 0, s->numtris - 1);
}
md3draw_handle_triangles(s, indexhandle, 1, m->usesalpha ? m : NULL);
}
else
{
indexhandle = m->vindexes;
md3draw_handle_triangles(s, indexhandle, 1, NULL);
}
GLInterface.UseDetailMapping(false);
GLInterface.UseGlowMapping(false);
}
//------------
if (m->usesalpha) GLInterface.EnableAlphaTest(false);
GLInterface.SetCull(Cull_None);
VSMatrix identity(0);
GLInterface.SetMatrix(Matrix_ModelView, &identity);
GLInterface.SetTinting(0, 0);
GLInterface.SetClamp(prevClamp);
GLInterface.SetPolymostShader();
globalnoeffect=0;
return 1;
}
static void md3free(md3model_t *m)
{
mdanim_t *anim, *nanim = NULL;
mdskinmap_t *sk, *nsk = NULL;
if (!m) return;
for (anim=m->animations; anim; anim=nanim)
{
nanim = anim->next;
Xfree(anim);
}
for (sk=m->skinmap; sk; sk=nsk)
{
nsk = sk->next;
Xfree(sk->fn);
Xfree(sk);
}
if (m->head.surfs)
{
for (bssize_t surfi=m->head.numsurfs-1; surfi>=0; surfi--)
{
md3surf_t *s = &m->head.surfs[surfi];
Xfree(s->tris);
Xfree(s->geometry); // FREE_SURFS_GEOMETRY
}
Xfree(m->head.surfs);
}
Xfree(m->head.tags);
Xfree(m->head.frames);
Xfree(m->texid);
Xfree(m->muladdframes);
Xfree(m->indexes);
Xfree(m->vindexes);
Xfree(m->maxdepths);
Xfree(m);
}
//---------------------------------------- MD3 LIBRARY ENDS ----------------------------------------
//--------------------------------------- MD LIBRARY BEGINS ---------------------------------------
mdmodel_t *mdload(const char *filnam)
{
mdmodel_t *vm;
int32_t i;
vm = (mdmodel_t *)voxload(filnam);
if (vm) return vm;
buildvfs_kfd fil = kopen4load(filnam,0);
if (fil == buildvfs_kfd_invalid)
return NULL;
kread(fil,&i,4);
klseek(fil,0,SEEK_SET);
switch (B_LITTLE32(i))
{
case IDP2_MAGIC:
// initprintf("Warning: model \"%s\" is version IDP2; wanted version IDP3\n",filnam);
vm = (mdmodel_t *)md2load(fil,filnam);
break; //IDP2
case IDP3_MAGIC:
vm = (mdmodel_t *)md3load(fil);
break; //IDP3
default:
vm = NULL;
break;
}
kclose(fil);
if (vm)
{
md3model_t *vm3 = (md3model_t *)vm;
// smuggle the file name into the model struct.
// head.nam is unused as far as I can tell
Bstrncpyz(vm3->head.nam, filnam, sizeof(vm3->head.nam));
md3postload_common(vm3);
}
return vm;
}
int32_t polymost_mddraw(tspriteptr_t tspr)
{
if (maxmodelverts > allocmodelverts)
{
vertlist = (vec3f_t *) Xrealloc(vertlist, sizeof(vec3f_t)*maxmodelverts);
allocmodelverts = maxmodelverts;
}
mdmodel_t *const vm = models[tile2model[Ptile2tile(tspr->picnum,
(tspr->owner >= MAXSPRITES) ? tspr->pal : sprite[tspr->owner].pal)].modelid];
if (vm->mdnum == 1)
return polymost_voxdraw((voxmodel_t *)vm,tspr);
else if (vm->mdnum == 3)
return polymost_md3draw((md3model_t *)vm,tspr);
return 0;
}
void mdfree(mdmodel_t *vm)
{
if (vm->mdnum == 1) { voxfree((voxmodel_t *)vm); return; }
if (vm->mdnum == 2 || vm->mdnum == 3) { md3free((md3model_t *)vm); return; }
}
#endif
//---------------------------------------- MD LIBRARY ENDS ----------------------------------------