raze-gles/source/build/include/pragmas.h

248 lines
8.0 KiB
C++

// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
//
// This file has been modified from Ken Silverman's original release
// by Jonathon Fowler (jf@jonof.id.au)
// by the EDuke32 team (development@voidpoint.com)
#ifndef pragmas_h_
#define pragmas_h_
#define EDUKE32_GENERATE_PRAGMAS \
EDUKE32_SCALER_PRAGMA(1) EDUKE32_SCALER_PRAGMA(2) EDUKE32_SCALER_PRAGMA(3) EDUKE32_SCALER_PRAGMA(4) \
EDUKE32_SCALER_PRAGMA(5) EDUKE32_SCALER_PRAGMA(6) EDUKE32_SCALER_PRAGMA(7) EDUKE32_SCALER_PRAGMA(8) \
EDUKE32_SCALER_PRAGMA(9) EDUKE32_SCALER_PRAGMA(10) EDUKE32_SCALER_PRAGMA(11) EDUKE32_SCALER_PRAGMA(12) \
EDUKE32_SCALER_PRAGMA(13) EDUKE32_SCALER_PRAGMA(14) EDUKE32_SCALER_PRAGMA(15) EDUKE32_SCALER_PRAGMA(16) \
EDUKE32_SCALER_PRAGMA(17) EDUKE32_SCALER_PRAGMA(18) EDUKE32_SCALER_PRAGMA(19) EDUKE32_SCALER_PRAGMA(20) \
EDUKE32_SCALER_PRAGMA(21) EDUKE32_SCALER_PRAGMA(22) EDUKE32_SCALER_PRAGMA(23) EDUKE32_SCALER_PRAGMA(24) \
EDUKE32_SCALER_PRAGMA(25) EDUKE32_SCALER_PRAGMA(26) EDUKE32_SCALER_PRAGMA(27) EDUKE32_SCALER_PRAGMA(28) \
EDUKE32_SCALER_PRAGMA(29) EDUKE32_SCALER_PRAGMA(30) EDUKE32_SCALER_PRAGMA(31)
extern int32_t reciptable[2048], fpuasm;
// break the C version of divscale out from the others
// because asm version overflows in drawmapview()
#define qw(x) ((int64_t)(x)) // quadword cast
#define dw(x) ((int32_t)(x)) // doubleword cast
#define wo(x) ((int16_t)(x)) // word cast
#define by(x) ((uint8_t)(x)) // byte cast
#define DIVTABLESIZE 16384
extern libdivide::libdivide_s64_t divtable64[DIVTABLESIZE];
extern libdivide::libdivide_s32_t divtable32[DIVTABLESIZE];
extern void initdivtables(void);
static inline uint32_t divideu32(uint32_t const n, uint32_t const d)
{
static libdivide::libdivide_u32_t udiv;
static uint32_t lastd;
if (d == lastd)
goto skip;
udiv = libdivide::libdivide_u32_gen((lastd = d));
skip:
return libdivide::libdivide_u32_do(n, &udiv);
}
static inline int64_t tabledivide64(int64_t const n, int64_t const d)
{
static libdivide::libdivide_s64_t sdiv;
static int32_t lastd;
auto const dptr = ((unsigned)d < DIVTABLESIZE) ? &divtable64[d] : &sdiv;
if (d == lastd || dptr != &sdiv)
goto skip;
sdiv = libdivide::libdivide_s64_gen((lastd = d));
skip:
return libdivide::libdivide_s64_do(n, dptr);
}
static inline int32_t tabledivide32(int32_t const n, int32_t const d)
{
static libdivide::libdivide_s32_t sdiv;
static int32_t lastd;
auto const dptr = ((unsigned)d < DIVTABLESIZE) ? &divtable32[d] : &sdiv;
if (d == lastd || dptr != &sdiv)
goto skip;
sdiv = libdivide::libdivide_s32_gen((lastd = d));
skip:
return libdivide::libdivide_s32_do(n, dptr);
}
extern uint32_t divideu32_noinline(uint32_t n, uint32_t d);
extern int32_t tabledivide32_noinline(int32_t n, int32_t d);
extern int64_t tabledivide64_noinline(int64_t n, int64_t d);
#ifdef GEKKO
static inline int32_t divscale(int32_t eax, int32_t ebx, int32_t ecx) { return dw(tabledivide64(ldexp(eax, ecx), ebx)); }
#else
static inline int32_t divscale(int32_t eax, int32_t ebx, int32_t ecx) { return dw(tabledivide64(qw(eax) << by(ecx), ebx)); }
#endif
static inline int64_t divscale64(int64_t eax, int64_t ebx, int64_t ecx) { return tabledivide64(eax << ecx, ebx); }
#define EDUKE32_SCALER_PRAGMA(a) \
static FORCE_INLINE int32_t divscale##a(int32_t eax, int32_t ebx) { return divscale(eax, ebx, a); }
EDUKE32_GENERATE_PRAGMAS EDUKE32_SCALER_PRAGMA(32)
#undef EDUKE32_SCALER_PRAGMA
static inline int32_t scale(int32_t eax, int32_t edx, int32_t ecx)
{
return dw(tabledivide64(qw(eax) * edx, ecx));
}
static FORCE_INLINE int32_t scaleadd(int32_t eax, int32_t edx, int32_t addend, int32_t ecx)
{
return dw(tabledivide64(qw(eax) * edx + addend, ecx));
}
static inline int32_t roundscale(int32_t eax, int32_t edx, int32_t ecx)
{
return scaleadd(eax, edx, ecx / 2, ecx);
}
//
// Generic C
//
#ifndef pragmas_have_mulscale
#define EDUKE32_SCALER_PRAGMA(a) \
static FORCE_INLINE CONSTEXPR int32_t mulscale##a(int32_t eax, int32_t edx) { return dw((qw(eax) * edx) >> by(a)); } \
static FORCE_INLINE CONSTEXPR int32_t dmulscale##a(int32_t eax, int32_t edx, int32_t esi, int32_t edi) \
{ \
return dw(((qw(eax) * edx) + (qw(esi) * edi)) >> by(a)); \
} \
static FORCE_INLINE CONSTEXPR int32_t tmulscale##a(int32_t eax, int32_t edx, int32_t ebx, int32_t ecx, int32_t esi, int32_t edi) \
{ \
return dw(((qw(eax) * edx) + (qw(ebx) * ecx) + (qw(esi) * edi)) >> by(a)); \
}
EDUKE32_GENERATE_PRAGMAS EDUKE32_SCALER_PRAGMA(32)
#undef EDUKE32_SCALER_PRAGMA
#endif
template <typename T>
static FORCE_INLINE void swap(T * const a, T * const b)
{
T const t = *a;
*a = *b;
*b = t;
}
#define swapptr swap
#ifndef pragmas_have_swaps
#define swapchar swap
#define swapshort swap
#define swaplong swap
#define swapfloat swap
#define swapdouble swap
#define swap64bit swap
static FORCE_INLINE void swapchar2(void *a, void *b, int32_t s)
{
swapchar((char *)a, (char *)b);
swapchar((char *)a + 1, (char *)b + s);
}
#endif
static FORCE_INLINE CONSTEXPR char readpixel(void *s) { return *(char *)s; }
#ifndef pragmas_have_klabs
#if 0
static FORCE_INLINE int32_t klabs(int32_t const a)
{
uint32_t const m = a >> (sizeof(uint32_t) * CHAR_BIT - 1);
return (a ^ m) - m;
}
#else
#define klabs(x) abs(x)
#endif
#endif
#ifndef pragmas_have_ksgn
static FORCE_INLINE CONSTEXPR int ksgn(int32_t a) { return (a > 0) - (a < 0); }
#endif
#ifndef pragmas_have_mulscale
static FORCE_INLINE CONSTEXPR int32_t mulscale(int32_t eax, int32_t edx, int32_t ecx) { return dw((qw(eax) * edx) >> by(ecx)); }
static FORCE_INLINE CONSTEXPR int32_t dmulscale(int32_t eax, int32_t edx, int32_t esi, int32_t edi, int32_t ecx)
{
return dw(((qw(eax) * edx) + (qw(esi) * edi)) >> by(ecx));
}
#endif
#ifndef pragmas_have_qinterpolatedown16
void qinterpolatedown16(intptr_t bufptr, int32_t num, int32_t val, int32_t add);
void qinterpolatedown16short(intptr_t bufptr, int32_t num, int32_t val, int32_t add);
#endif
#ifndef pragmas_have_clearbuf
void clearbuf(void *d, int32_t c, int32_t a);
#endif
#ifndef pragmas_have_copybuf
void copybuf(const void *s, void *d, int32_t c);
#endif
#ifndef pragmas_have_swaps
void swapbuf4(void *a, void *b, int32_t c);
#endif
#ifndef pragmas_have_clearbufbyte
void clearbufbyte(void *D, int32_t c, int32_t a);
#endif
#ifndef pragmas_have_copybufbyte
void copybufbyte(const void *S, void *D, int32_t c);
#endif
#ifndef pragmas_have_copybufreverse
void copybufreverse(const void *S, void *D, int32_t c);
#endif
#ifndef pragmas_have_krecipasm
static inline int32_t krecipasm(int32_t i)
{
// Ken did this
union { int32_t i; float f; } x;
x.f = (float)i;
i = x.i;
return ((reciptable[(i >> 12) & 2047] >> (((i - 0x3f800000) >> 23) & 31)) ^ (i >> 31));
}
#endif
#undef qw
#undef dw
#undef wo
#undef by
static inline void swapbufreverse(void *s, void *d, int32_t c)
{
uint8_t *src = (uint8_t *)s, *dst = (uint8_t *)d;
Bassert(c >= 4);
do
{
swapchar(dst, src);
swapchar(dst + 1, src - 1);
swapchar(dst + 2, src - 2);
swapchar(dst + 3, src - 3);
dst += 4, src -= 4;
} while ((c -= 4) > 4);
while (c--)
swapchar(dst++, src--);
}
#endif // pragmas_h_